These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 37095948)
61. Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures. Greco I; Miskovic V; Varon C; Marraffa C; Iorio CS Front Bioeng Biotechnol; 2022; 10():896166. PubMed ID: 35875487 [TBL] [Abstract][Full Text] [Related]
62. 3D printable, tough, magnetic hydrogels with programmed magnetization for fast actuation. Tang J; Sun B; Yin Q; Yang M; Hu J; Wang T J Mater Chem B; 2021 Nov; 9(44):9183-9190. PubMed ID: 34698328 [TBL] [Abstract][Full Text] [Related]
63. 3D Printing Tannic Acid-Based Gels via Digital Light Processing. Li N; Xiang Z; Rong Y; Zhu L; Huang X Macromol Biosci; 2022 Apr; 22(4):e2100455. PubMed ID: 35076165 [TBL] [Abstract][Full Text] [Related]
64. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions. Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187 [TBL] [Abstract][Full Text] [Related]
65. Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents. Brodin E; Boehmer M; Prentice A; Neff E; McCoy K; Mueller J; Saul J; Sparks JL Biomed Mater; 2022 Jul; 17(5):. PubMed ID: 35793683 [TBL] [Abstract][Full Text] [Related]
66. 3D Printing of Electrically Responsive PVC Gel Actuators. Wang Z; Wang Y; Wang Z; He Q; Li C; Cai S ACS Appl Mater Interfaces; 2021 May; 13(20):24164-24172. PubMed ID: 33973764 [TBL] [Abstract][Full Text] [Related]
67. On-demand modulation of 3D-printed elastomers using programmable droplet inclusions. Mea HJ; Delgadillo L; Wan J Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14790-14797. PubMed ID: 32541054 [TBL] [Abstract][Full Text] [Related]
68. A systematic evaluation of medical 3D printing accuracy of multi-pathological anatomical models for surgical planning manufactured in elastic and rigid material using desktop inverted vat photopolymerization. Ravi P; Chepelev L; Lawera N; Haque KMA; Chen VCP; Ali A; Rybicki FJ Med Phys; 2021 Jun; 48(6):3223-3233. PubMed ID: 33733499 [TBL] [Abstract][Full Text] [Related]
69. Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing. Zhao Q; Liang Y; Ren L; Qiu F; Zhang Z; Ren L J Mech Behav Biomed Mater; 2018 Feb; 78():395-403. PubMed ID: 29223036 [TBL] [Abstract][Full Text] [Related]
70. Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications. Jin Y; Shen Y; Yin J; Qian J; Huang Y ACS Appl Mater Interfaces; 2018 Mar; 10(12):10461-10470. PubMed ID: 29493213 [TBL] [Abstract][Full Text] [Related]
71. Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties. Cristovão AF; Sousa D; Silvestre F; Ropio I; Gaspar A; Henriques C; Velhinho A; Baptista AC; Faustino M; Ferreira I 3D Print Med; 2019 Aug; 5(1):12. PubMed ID: 31376049 [TBL] [Abstract][Full Text] [Related]
73. 3D Printing of Ultratough Polyion Complex Hydrogels. Zhu F; Cheng L; Yin J; Wu ZL; Qian J; Fu J; Zheng Q ACS Appl Mater Interfaces; 2016 Nov; 8(45):31304-31310. PubMed ID: 27779379 [TBL] [Abstract][Full Text] [Related]
74. On the progress of 3D-printed hydrogels for tissue engineering. Advincula RC; Dizon JRC; Caldona EB; Viers RA; Siacor FDC; Maalihan RD; Espera AH MRS Commun; 2021; 11(5):539-553. PubMed ID: 34367725 [TBL] [Abstract][Full Text] [Related]
75. 3D Printed All-Natural Hydrogels: Flame-Retardant Materials Toward Attaining Green Sustainability. Zuo X; Zhou Y; Hao K; Liu C; Yu R; Huang A; Wu C; Yang Y Adv Sci (Weinh); 2024 Jan; 11(3):e2306360. PubMed ID: 38098258 [TBL] [Abstract][Full Text] [Related]
76. Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. Zhang B; Li S; Hingorani H; Serjouei A; Larush L; Pawar AA; Goh WH; Sakhaei AH; Hashimoto M; Kowsari K; Magdassi S; Ge Q J Mater Chem B; 2018 May; 6(20):3246-3253. PubMed ID: 32254382 [TBL] [Abstract][Full Text] [Related]
77. Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing. Ma T; Lv L; Ouyang C; Hu X; Liao X; Song Y; Hu X Carbohydr Polym; 2021 Feb; 253():117217. PubMed ID: 33278981 [TBL] [Abstract][Full Text] [Related]
78. Digital Light Processing 3D Printing of Soft Semicrystalline Acrylates with Localized Shape Memory and Stiffness Control. Rylski AK; Maraliga T; Wu Y; Recker EA; Arrowood AJ; Sanoja GE; Page ZA ACS Appl Mater Interfaces; 2023 Jul; 15(28):34097-34107. PubMed ID: 37418641 [TBL] [Abstract][Full Text] [Related]
79. Three-Dimensional Printed Hydrogels with High Elasticity, High Toughness, and Ionic Conductivity for Multifunctional Applications. Deng Z; Qian T; Hang F ACS Biomater Sci Eng; 2020 Dec; 6(12):7061-7070. PubMed ID: 33320594 [TBL] [Abstract][Full Text] [Related]
80. 4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient. Zhang C; Lu X; Fei G; Wang Z; Xia H; Zhao Y ACS Appl Mater Interfaces; 2019 Nov; 11(47):44774-44782. PubMed ID: 31692319 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]