These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37096389)

  • 1. Synthetic Approaches of Epoxysuccinate Chemical Probes.
    Nicolau I; Hădade ND; Matache M; Funeriu DP
    Chembiochem; 2023 Aug; 24(16):e202300157. PubMed ID: 37096389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probes for activity-based profiling of plant proteases.
    van der Hoorn RA; Kaiser M
    Physiol Plant; 2012 May; 145(1):18-27. PubMed ID: 21985675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From covalent glycosidase inhibitors to activity-based glycosidase probes.
    Willems LI; Jiang J; Li KY; Witte MD; Kallemeijn WW; Beenakker TJ; Schröder SP; Aerts JM; van der Marel GA; Codée JD; Overkleeft HS
    Chemistry; 2014 Aug; 20(35):10864-72. PubMed ID: 25100671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes.
    Edgington LE; Verdoes M; Bogyo M
    Curr Opin Chem Biol; 2011 Dec; 15(6):798-805. PubMed ID: 22098719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel aza peptide inhibitors and active-site probes of papain-family cysteine proteases.
    Verhelst SH; Witte MD; Arastu-Kapur S; Fonovic M; Bogyo M
    Chembiochem; 2006 Jun; 7(6):943-50. PubMed ID: 16607671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Apoplastic Protease Inhibitors Using Convolution Activity-Based Protein Profiling.
    Passarge A; Doehlemann G; Misas Villamil JC
    Methods Mol Biol; 2022; 2447():95-104. PubMed ID: 35583775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-molecule probes elucidate global enzyme activity in a proteomic context.
    Lee JS; Yoo YH; Yoon CN
    BMB Rep; 2014 Mar; 47(3):149-57. PubMed ID: 24499666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel broad-spectrum activity-based probes to profile malarial cysteine proteases.
    Tan MSY; Davison D; Sanchez MI; Anderson BM; Howell S; Snijders A; Edgington-Mitchell LE; Deu E
    PLoS One; 2020; 15(1):e0227341. PubMed ID: 31923258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-based probes as a tool for functional proteomic analysis of proteases.
    Fonović M; Bogyo M
    Expert Rev Proteomics; 2008 Oct; 5(5):721-30. PubMed ID: 18937562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools.
    Greenbaum D; Medzihradszky KF; Burlingame A; Bogyo M
    Chem Biol; 2000 Aug; 7(8):569-81. PubMed ID: 11048948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoaffinity labeling in activity-based protein profiling.
    Geurink PP; Prely LM; van der Marel GA; Bischoff R; Overkleeft HS
    Top Curr Chem; 2012; 324():85-113. PubMed ID: 22028098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-based probes for the study of proteases: recent advances and developments.
    Serim S; Haedke U; Verhelst SH
    ChemMedChem; 2012 Jul; 7(7):1146-59. PubMed ID: 22431376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity based chemical proteomics: profiling proteases as drug targets.
    Heal WP; Wickramasinghe SR; Tate EW
    Curr Drug Discov Technol; 2008 Sep; 5(3):200-12. PubMed ID: 18690889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and Application of Activity-Based Probes for Proteases.
    Van Kersavond T; Nguyen MTN; Verhelst SHL
    Methods Mol Biol; 2017; 1574():255-266. PubMed ID: 28315257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive profiling for enzyme inhibitors using chemical probes.
    Prothiwa M; Böttcher T
    Methods Enzymol; 2020; 633():49-69. PubMed ID: 32046853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-based protein profiling for the functional annotation of enzymes.
    Barglow KT; Cravatt BF
    Nat Methods; 2007 Oct; 4(10):822-7. PubMed ID: 17901872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases.
    Chan EW; Chattopadhaya S; Panicker RC; Huang X; Yao SQ
    J Am Chem Soc; 2004 Nov; 126(44):14435-46. PubMed ID: 15521763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of alpha,beta-unsaturated ketone-based probes for papain-family cysteine proteases.
    Yang Z; Fonović M; Verhelst SH; Blum G; Bogyo M
    Bioorg Med Chem; 2009 Feb; 17(3):1071-8. PubMed ID: 18343672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.