These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37096427)

  • 41. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.
    Lee E; Kim C; Jang J
    Chemistry; 2013 Jul; 19(31):10280-6. PubMed ID: 23765414
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Colloidal quantum dot light-emitting devices.
    Wood V; Bulović V
    Nano Rev; 2010; 1():. PubMed ID: 22110863
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation.
    Albaladejo-Siguan M; Becker-Koch D; Taylor AD; Sun Q; Lami V; Oppenheimer PG; Paulus F; Vaynzof Y
    ACS Nano; 2020 Jan; 14(1):384-393. PubMed ID: 31721556
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production - A review.
    Mehta A; Mishra A; Basu S; Shetti NP; Reddy KR; Saleh TA; Aminabhavi TM
    J Environ Manage; 2019 Nov; 250():109486. PubMed ID: 31518793
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier.
    Wei G; Forrest SR
    Nano Lett; 2007 Jan; 7(1):218-22. PubMed ID: 17212467
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlling the structures of organic semiconductor-quantum dot nanocomposites through ligand shell chemistry.
    Toolan DTW; Weir MP; Kilbride RC; Willmott JR; King SM; Xiao J; Greenham NC; Friend RH; Rao A; Jones RAL; Ryan AJ
    Soft Matter; 2020 Sep; 16(34):7970-7981. PubMed ID: 32766663
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors.
    Chou KF; Dennis AM
    Sensors (Basel); 2015 Jun; 15(6):13288-325. PubMed ID: 26057041
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of Photoluminescent Quantum Dot Thiol-yne Nanocomposites via Thermal Curing or Photopolymerization.
    Stewart MH; Susumu K; Oh E; Brown CG; McClain CC; Gorzkowski EP; Boyd DA
    ACS Omega; 2018 Mar; 3(3):3314-3320. PubMed ID: 31458587
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers.
    Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Compact quantum dot surface modification to enable emergent behaviors in quantum dot-DNA composites.
    Dehankar A; Porter T; Johnson JA; Castro CE; Winter JO
    J Chem Phys; 2019 Oct; 151(14):144706. PubMed ID: 31615228
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells.
    Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantum Dot-Sensitized Photoreduction of CO
    Arcudi F; Đorđević L; Nagasing B; Stupp SI; Weiss EA
    J Am Chem Soc; 2021 Nov; 143(43):18131-18138. PubMed ID: 34664969
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MXene-Based Nanocomposites for Energy Conversion and Storage Applications.
    Zhang A; Liu R; Tian J; Huang W; Liu J
    Chemistry; 2020 May; 26(29):6342-6359. PubMed ID: 32314829
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers.
    Shaikh JS; Shaikh NS; Mali SS; Patil JV; Beknalkar SA; Patil AP; Tarwal NL; Kanjanaboos P; Hong CK; Patil PS
    ChemSusChem; 2019 Nov; 12(21):4724-4753. PubMed ID: 31347771
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Copper indium sulfide quantum dots in photocatalysis.
    Zhang J; Bifulco A; Amato P; Imparato C; Qi K
    J Colloid Interface Sci; 2023 May; 638():193-219. PubMed ID: 36738544
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture.
    Hu L; Zhao Q; Huang S; Zheng J; Guan X; Patterson R; Kim J; Shi L; Lin CH; Lei Q; Chu D; Tao W; Cheong S; Tilley RD; Ho-Baillie AWY; Luther JM; Yuan J; Wu T
    Nat Commun; 2021 Jan; 12(1):466. PubMed ID: 33473106
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent advances in sensitized mesoscopic solar cells.
    Grätzel M
    Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancing Loading Amount and Performance of Quantum-Dot-Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots from Bicomponent Solvents.
    Wang W; Rao H; Fang W; Zhang H; Zhou M; Pan Z; Zhong X
    J Phys Chem Lett; 2019 Jan; 10(2):229-237. PubMed ID: 30600681
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Solution-Processed Two-Dimensional Metal Dichalcogenide-Based Nanomaterials for Energy Storage and Conversion.
    Cao X; Tan C; Zhang X; Zhao W; Zhang H
    Adv Mater; 2016 Aug; 28(29):6167-96. PubMed ID: 27071683
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.