These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37096901)
1. Essential roles of the hypothalamic A11 region and the medullary raphe nuclei in regulation of colorectal motility in rats. Sawamura T; Yuki N; Horii K; Naitou K; Yamaguchi H; Yamanaka A; Shiina T; Shimizu Y Am J Physiol Gastrointest Liver Physiol; 2023 Jun; 324(6):G466-G475. PubMed ID: 37096901 [TBL] [Abstract][Full Text] [Related]
2. Medullary raphe nuclei activate the lumbosacral defecation center through the descending serotonergic pathway to regulate colorectal motility in rats. Nakamori H; Naitou K; Horii Y; Shimaoka H; Horii K; Sakai H; Yamada A; Furue H; Shiina T; Shimizu Y Am J Physiol Gastrointest Liver Physiol; 2018 Mar; 314(3):G341-G348. PubMed ID: 29167116 [TBL] [Abstract][Full Text] [Related]
3. Roles of the noradrenergic nucleus locus coeruleus and dopaminergic nucleus A11 region as supraspinal defecation centers in rats. Nakamori H; Naitou K; Horii Y; Shimaoka H; Horii K; Sakai H; Yamada A; Furue H; Shiina T; Shimizu Y Am J Physiol Gastrointest Liver Physiol; 2019 Oct; 317(4):G545-G555. PubMed ID: 31460791 [TBL] [Abstract][Full Text] [Related]
4. Descending monoaminergic pathways projecting to the spinal defecation center enhance colorectal motility in rats. Naitou K; Nakamori H; Horii K; Kato K; Horii Y; Shimaoka H; Shiina T; Shimizu Y Am J Physiol Gastrointest Liver Physiol; 2018 Oct; 315(4):G631-G637. PubMed ID: 30070581 [TBL] [Abstract][Full Text] [Related]
5. Intrathecally administered substance P activated the spinal defecation center and enhanced colorectal motility in anesthetized rats. Naitou K; Iwashita H; Ueda HH; Shiraishi M; Fujimoto Y; Horii K; Sawamura T; Shiina T; Shimizu Y Am J Physiol Gastrointest Liver Physiol; 2022 Jul; 323(1):G21-G30. PubMed ID: 35470689 [TBL] [Abstract][Full Text] [Related]
6. Sexually dimorphic response of colorectal motility to noxious stimuli in the colorectum in rats. Horii K; Ehara Y; Shiina T; Naitou K; Nakamori H; Horii Y; Shimaoka H; Saito S; Shimizu Y J Physiol; 2021 Mar; 599(5):1421-1437. PubMed ID: 33347601 [TBL] [Abstract][Full Text] [Related]
7. Contribution of sex hormones to the sexually dimorphic response of colorectal motility to noxious stimuli in rats. Horii K; Sawamura T; Onishi A; Yuki N; Naitou K; Shiina T; Shimizu Y Am J Physiol Gastrointest Liver Physiol; 2022 Jun; 323(1):G1-G8. PubMed ID: 35438007 [TBL] [Abstract][Full Text] [Related]
8. Stimulation of dopamine D2-like receptors in the lumbosacral defaecation centre causes propulsive colorectal contractions in rats. Naitou K; Nakamori H; Shiina T; Ikeda A; Nozue Y; Sano Y; Yokoyama T; Yamamoto Y; Yamada A; Akimoto N; Furue H; Shimizu Y J Physiol; 2016 Aug; 594(15):4339-50. PubMed ID: 26999074 [TBL] [Abstract][Full Text] [Related]
9. Sex differences in the central regulation of colorectal motility in response to noxious stimuli. Horii K; Sawamura T; Yuki N; Shiina T; Shimizu Y J Smooth Muscle Res; 2023; 59():28-33. PubMed ID: 37100618 [TBL] [Abstract][Full Text] [Related]
10. Colokinetic effect of noradrenaline in the spinal defecation center: implication for motility disorders. Naitou K; Shiina T; Kato K; Nakamori H; Sano Y; Shimizu Y Sci Rep; 2015 Jul; 5():12623. PubMed ID: 26218221 [TBL] [Abstract][Full Text] [Related]
11. Alterations in descending brain-spinal pathways regulating colorectal motility in a rat model of Parkinson's disease. Sawamura T; Yuki N; Aoki K; Horii K; Horii Y; Naitou K; Tsukamoto S; Shiina T; Shimizu Y Am J Physiol Gastrointest Liver Physiol; 2024 Feb; 326(2):G195-G204. PubMed ID: 38111988 [TBL] [Abstract][Full Text] [Related]
13. Biphasic modulation of spinal nociceptive transmission from the medullary raphe nuclei in the rat. Zhuo M; Gebhart GF J Neurophysiol; 1997 Aug; 78(2):746-58. PubMed ID: 9307109 [TBL] [Abstract][Full Text] [Related]
15. Colokinetic effect of somatostatin in the spinal defecation center in rats. Naitou K; Shiina T; Nakamori H; Sano Y; Shimaoka H; Shimizu Y J Physiol Sci; 2018 May; 68(3):243-251. PubMed ID: 28124286 [TBL] [Abstract][Full Text] [Related]
16. Innervation of serotonergic medullary raphe neurons from cells of the rostral ventrolateral medulla in rats. Zagon A Neuroscience; 1993 Aug; 55(3):849-67. PubMed ID: 7692351 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the influence of rostral and caudal raphe neurons on the adrenal secretion of catecholamines and on the release of adrenocorticotropin in the cat. Bereiter DA; Gann DS Pain; 1990 Jul; 42(1):81-91. PubMed ID: 1978277 [TBL] [Abstract][Full Text] [Related]
18. Electrical stimulation in the medullary nucleus raphe magnus inhibits noxious heat-evoked fos protein-like immunoreactivity in the rat lumbar spinal cord. Jones SL; Light AR Brain Res; 1990 Oct; 530(2):335-8. PubMed ID: 2176120 [TBL] [Abstract][Full Text] [Related]
19. Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: a multiple transmitter complex. Bowker RM; Westlund KN; Sullivan MC; Wilber JF; Coulter JD Brain Res; 1983 Dec; 288(1-2):33-48. PubMed ID: 6198030 [TBL] [Abstract][Full Text] [Related]
20. Intravenous morphine-induced activation of vagal afferents: peripheral, spinal, and CNS substrates mediating inhibition of spinal nociception and cardiovascular responses. Randich A; Thurston CL; Ludwig PS; Robertson JD; Rasmussen C J Neurophysiol; 1992 Oct; 68(4):1027-45. PubMed ID: 1432065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]