These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 37096902)
1. Isotropic Gels of Cellulose Nanocrystals Grafted with Dialkyl Groups: Influence of Surface Group Topology from Nonlinear Oscillatory Shear. Wojno S; Sonker AK; Feldhusen J; Westman G; Kádár R Langmuir; 2023 May; 39(18):6433-6446. PubMed ID: 37096902 [TBL] [Abstract][Full Text] [Related]
2. Percolation and phase behavior in cellulose nanocrystal suspensions from nonlinear rheological analysis. Wojno S; Ahlinder A; Altskär A; Stading M; Abitbol T; Kádár R Carbohydr Polym; 2023 May; 308():120622. PubMed ID: 36813332 [TBL] [Abstract][Full Text] [Related]
3. Colloidal Behavior of Cellulose Nanocrystals Grafted with Poly(2-alkyl-2-oxazoline)s. Gauche C; Felisberti MI ACS Omega; 2019 Jul; 4(7):11893-11905. PubMed ID: 31460300 [TBL] [Abstract][Full Text] [Related]
4. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites. Khoshkava V; Kamal MR ACS Appl Mater Interfaces; 2014 Jun; 6(11):8146-57. PubMed ID: 24809661 [TBL] [Abstract][Full Text] [Related]
5. Linear and nonlinear oscillatory rheology of chemically pretreated and non-pretreated cellulose nanofiber suspensions. Song HY; Park SY; Kim S; Youn HJ; Hyun K Carbohydr Polym; 2022 Jan; 275():118765. PubMed ID: 34742451 [TBL] [Abstract][Full Text] [Related]
7. Effect of Ionic Surfactants on the Viscoelastic Properties of Chiral Nematic Cellulose Nanocrystal Suspensions. Ranjbar D; Hatzikiriakos SG Langmuir; 2020 Jan; 36(1):293-301. PubMed ID: 31845815 [TBL] [Abstract][Full Text] [Related]
8. Slow dynamics and time-composition superposition in gels of cellulose nanocrystals. Morlet-Decarnin L; Divoux T; Manneville S J Chem Phys; 2022 Jun; 156(21):214901. PubMed ID: 35676150 [TBL] [Abstract][Full Text] [Related]
9. Shear melting and recovery of crosslinkable cellulose nanocrystal-polymer gels. Rao A; Divoux T; McKinley GH; Hart AJ Soft Matter; 2019 May; 15(21):4401-4412. PubMed ID: 31095139 [TBL] [Abstract][Full Text] [Related]
10. Impact of counterion valency on the rheology of sulfonated cellulose nanocrystal hydrogels. Nyamayaro K; Mehrkhodavandi P; Hatzikiriakos SG Carbohydr Polym; 2023 Feb; 302():120378. PubMed ID: 36604056 [TBL] [Abstract][Full Text] [Related]
11. Thermoresponsive and Injectable Composite Hydrogels of Cellulose Nanocrystals and Pluronic F127. Kushan E; Senses E ACS Appl Bio Mater; 2021 Apr; 4(4):3507-3517. PubMed ID: 35014435 [TBL] [Abstract][Full Text] [Related]
12. Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals. Azzam F; Siqueira E; Fort S; Hassaini R; Pignon F; Travelet C; Putaux JL; Jean B Biomacromolecules; 2016 Jun; 17(6):2112-9. PubMed ID: 27116589 [TBL] [Abstract][Full Text] [Related]
13. Understanding viscoelastic behavior of hybrid nanocellulose film based on rheological and electrostatic observation in blended suspension. Kim M; Kim S; Han N; Lee S; Kim H Carbohydr Polym; 2023 Jan; 300():120218. PubMed ID: 36372470 [TBL] [Abstract][Full Text] [Related]
14. A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour. Xu Y; Atrens A; Stokes JR Adv Colloid Interface Sci; 2020 Jan; 275():102076. PubMed ID: 31780045 [TBL] [Abstract][Full Text] [Related]
15. Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing. Ma T; Lv L; Ouyang C; Hu X; Liao X; Song Y; Hu X Carbohydr Polym; 2021 Feb; 253():117217. PubMed ID: 33278981 [TBL] [Abstract][Full Text] [Related]
16. Ion-Mediated Gelation of Aqueous Suspensions of Cellulose Nanocrystals. Chau M; Sriskandha SE; Pichugin D; Thérien-Aubin H; Nykypanchuk D; Chauve G; Méthot M; Bouchard J; Gang O; Kumacheva E Biomacromolecules; 2015 Aug; 16(8):2455-62. PubMed ID: 26102157 [TBL] [Abstract][Full Text] [Related]
17. Self-assembly of cellulose nanocrystals of different lengths. Raghuwanshi VS; Browne C; Batchelor W; Garnier G J Colloid Interface Sci; 2023 Jan; 630(Pt B):249-259. PubMed ID: 36327727 [TBL] [Abstract][Full Text] [Related]
18. Cellulose Nanocrystal Gels with Tunable Mechanical Properties from Hybrid Thermal Strategies. Li Z; Soto MA; Drummond JG; Martinez DM; Hamad WY; MacLachlan MJ ACS Appl Mater Interfaces; 2023 Feb; 15(6):8406-8414. PubMed ID: 36719931 [TBL] [Abstract][Full Text] [Related]