BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37096905)

  • 1. Boosting Polyethylene Hydrogenolysis Performance of Ru-CeO
    Ji H; Wang X; Wei X; Peng Y; Zhang S; Song S; Zhang H
    Small; 2023 Aug; 19(35):e2300903. PubMed ID: 37096905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of Polyolefin Waste to Liquid Alkanes with Ru-Based Catalysts under Mild Conditions.
    Rorrer JE; Beckham GT; Román-Leshkov Y
    JACS Au; 2021 Jan; 1(1):8-12. PubMed ID: 34467267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the selectivity of the hydrogenolysis of polyamides catalysed by ceria-supported metal nanoparticles.
    Wu X; Lee WT; Turnell-Ritson RC; Delannoi PCL; Lin KH; Dyson PJ
    Nat Commun; 2023 Oct; 14(1):6524. PubMed ID: 37845260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on Tungstated Zirconia.
    Wang C; Xie T; Kots PA; Vance BC; Yu K; Kumar P; Fu J; Liu S; Tsilomelekis G; Stach EA; Zheng W; Vlachos DG
    JACS Au; 2021 Sep; 1(9):1422-1434. PubMed ID: 34604852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the impact of TiO
    Kim T; Nguyen-Phu H; Kwon T; Kang KH; Ro I
    Environ Pollut; 2023 Aug; 331(Pt 2):121876. PubMed ID: 37263565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran with high yield over bimetallic Ru-Co/AC catalysts.
    Dong Z; Zhang Y; Xia H
    RSC Adv; 2024 May; 14(21):14982-14991. PubMed ID: 38720989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isoreticular Metal-Organic Frameworks Confined Mononuclear Ru-Hydrides Enable Highly Efficient Shape-Selective Hydrogenolysis of Polyolefins.
    Chauhan M; Antil N; Rana B; Akhtar N; Thadhani C; Begum W; Manna K
    JACS Au; 2023 Dec; 3(12):3473-3484. PubMed ID: 38155638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Electronic Metal-Support Interactions on Ceria-Supported Noble-Metal Nanocatalysts in Controlling the Low-Temperature CO Oxidation Activity.
    Yuan K; Guo Y; Huang L; Zhou L; Yin HJ; Liu H; Yan CH; Zhang YW
    Inorg Chem; 2021 Apr; 60(7):4207-4217. PubMed ID: 33373226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling Reaction Routes in Noble-Metal-Catalyzed Conversion of Aryl Ethers.
    Schmid J; Wang M; Gutiérrez OY; Bullock RM; Camaioni DM; Lercher JA
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202203172. PubMed ID: 35482977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regioselectivity and Reaction Mechanism of Ru-Catalyzed Hydrogenolysis of Squalane and Model Alkanes.
    Nakagawa Y; Oya SI; Kanno D; Nakaji Y; Tamura M; Tomishige K
    ChemSusChem; 2017 Jan; 10(1):189-198. PubMed ID: 27863013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-Selective Polyolefin Hydrogenolysis on Atomic Ru for Methanation Suppression and Liquid Fuel Production.
    Chu M; Wang X; Wang X; Lou X; Zhang C; Cao M; Wang L; Li Y; Liu S; Sham TK; Zhang Q; Chen J
    Research (Wash D C); 2023; 6():0032. PubMed ID: 37040499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafine Nanoparticle-Supported Ru Nanoclusters with Ultrahigh Catalytic Activity.
    Zhu L; Jiang Y; Zheng J; Zhang N; Yu C; Li Y; Pao CW; Chen JL; Jin C; Lee JF; Zhong CJ; Chen BH
    Small; 2015 Sep; 11(34):4385-93. PubMed ID: 26081741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic modulation of metal-support interactions improves polypropylene hydrogenolysis over ruthenium catalysts.
    Kots PA; Xie T; Vance BC; Quinn CM; de Mello MD; Boscoboinik JA; Wang C; Kumar P; Stach EA; Marinkovic NS; Ma L; Ehrlich SN; Vlachos DG
    Nat Commun; 2022 Sep; 13(1):5186. PubMed ID: 36057603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Product Distribution of Polyethylene Hydrogenolysis Using Bimetallic RuM
    Yuan Y; Xie Z; Turaczy KK; Hwang S; Zhou J; Chen JG
    Chem Bio Eng; 2024 Feb; 1(1):67-75. PubMed ID: 38434798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Transformation of Glycerol to Propanal using Zirconium Phosphate-Supported Bimetallic Catalysts.
    Gong H; Zhou C; Cui Y; Dai S; Zhao X; Luo R; An P; Li H; Wang H; Hou Z
    ChemSusChem; 2020 Sep; 13(18):4954-4966. PubMed ID: 32666698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous-Phase Hydrogenolysis of Glycerol over Re Promoted Ru Catalysts Encapuslated in Porous Silica Nanoparticles.
    Li KT; Yen RH
    Nanomaterials (Basel); 2018 Mar; 8(3):. PubMed ID: 29522432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogenolysis of Furfuryl Alcohol to 1,2-Pentanediol Over Supported Ruthenium Catalysts.
    Yamaguchi A; Murakami Y; Imura T; Wakita K
    ChemistryOpen; 2021 Aug; 10(8):731-736. PubMed ID: 34109757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ru/CeO
    Wang Z; Huang Z; Brosnahan JT; Zhang S; Guo Y; Guo Y; Wang L; Wang Y; Zhan W
    Environ Sci Technol; 2019 May; 53(9):5349-5358. PubMed ID: 30990306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Support structure and reduction treatment effects on CO oxidation of SiO
    Li J; Liu Z; Wang R
    J Colloid Interface Sci; 2018 Dec; 531():204-215. PubMed ID: 30032007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layered Double Hydroxide Derivatives for Polyolefin Upcycling.
    Chu M; Wang X; Wang X; Xu P; Zhang L; Li S; Feng K; Zhong J; Wang L; Li Y; He L; Cao M; Zhang Q; Chi L; Chen J
    J Am Chem Soc; 2024 Apr; 146(15):10655-10665. PubMed ID: 38564662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.