BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 37097053)

  • 21. Use of olive and sunflower protein hydrolysates for the physical and oxidative stabilization of fish oil-in-water emulsions.
    Ospina-Quiroga JL; Coronas-Lozano C; García-Moreno PJ; Guadix EM; Almécija-Rodríguez MDC; Pérez-Gálvez R
    J Sci Food Agric; 2024 Jul; 104(9):5541-5552. PubMed ID: 38362946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of salts on oxidative stability of lipids in Tween-20 stabilized oil-in-water emulsions.
    Cui L; Cho HT; McClements DJ; Decker EA; Park Y
    Food Chem; 2016 Apr; 197 Pt B():1130-5. PubMed ID: 26675849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of pea protein-tannic acid complexes: Impact on formation, stability, and digestion of flaxseed oil emulsions.
    Li R; Dai T; Tan Y; Fu G; Wan Y; Liu C; McClements DJ
    Food Chem; 2020 Apr; 310():125828. PubMed ID: 31812319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of enzymatic degraded polysaccharides from Enteromorpha prolifera on the physical and oxidative stability of fish oil-in-water emulsions.
    Shi MJ; Wang F; Jiang H; Qian WW; Xie YY; Wei XY; Zhou T
    Food Chem; 2020 Aug; 322():126774. PubMed ID: 32305876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation and Stabilization of W
    Molet-Rodríguez A; Martín-Belloso O; Salvia-Trujillo L
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33435343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hierarchical emulsion system stabilized by soyasaponin emulsion droplets.
    Zhao GX; Zhu LJ; Li H; Liu XY; Yang LN; Wang SN; Liu H; Ma T
    Food Funct; 2021 Nov; 12(21):10571-10580. PubMed ID: 34581363
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein-Stabilized Palm-Oil-in-Water Emulsification Using Microchannel Array Devices under Controlled Temperature.
    Kuroiwa T; Ito M; Okuyama Y; Yamashita K; Kanazawa A
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33086710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emulsification and oxidation stabilities of DAG-rich algae oil-in-water emulsions prepared with the selected emulsifiers.
    Chang HJ; Lee JH
    J Sci Food Agric; 2020 Jan; 100(1):287-294. PubMed ID: 31525263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of high-pressure processing enzymatic hydrolysates of soy protein isolate on the emulsifying and oxidative stability of myofibrillar protein-prepared oil-in-water emulsions.
    Guan H; Diao X; Liu D; Han J; Kong B; Liu D; Gao C; Zhang L
    J Sci Food Agric; 2020 Aug; 100(10):3910-3919. PubMed ID: 32342985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beeswax: A potential self-emulsifying agent for the construction of thermal-sensitive food W/O emulsion.
    Gao Y; Lei Y; Wu Y; Liang H; Li J; Pei Y; Li Y; Li B; Luo X; Liu S
    Food Chem; 2021 Jul; 349():129203. PubMed ID: 33581433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antioxidative Effect of
    Liu Y; Qi Y; Wang Q; Yin F; Zhan H; Wang H; Liu B; Nakamura Y; Wang J
    Mar Drugs; 2022 May; 20(6):. PubMed ID: 35736149
    [No Abstract]   [Full Text] [Related]  

  • 32. Systematic comparison of structural and lipid oxidation in oil-in-water and water-in-oil biphasic emulgels: effect of emulsion type, oil-phase composition, and oil fraction.
    Chen XW; Hu QH; Li XX; Ma CG
    J Sci Food Agric; 2022 Aug; 102(10):4200-4209. PubMed ID: 35018645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet Concentration on Physical Properties and Lipid Oxidation.
    Liu F; Zhu Z; Ma C; Luo X; Bai L; Decker EA; Gao Y; McClements DJ
    J Agric Food Chem; 2016 Dec; 64(50):9532-9541. PubMed ID: 27936671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A unifying approach to lipid oxidation in emulsions: Modelling and experimental validation.
    Schroën K; Berton-Carabin CC
    Food Res Int; 2022 Oct; 160():111621. PubMed ID: 36076435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of legume protein type and location on lipid oxidation in fish oil-in-water emulsions: Lentil, pea, and faba bean proteins.
    Gumus CE; Decker EA; McClements DJ
    Food Res Int; 2017 Oct; 100(Pt 2):175-185. PubMed ID: 28888438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of chitosan on the emulsifying properties of egg yolk hydrolysates: study on creaming, thermal and oxidative stability.
    Chang C; Gao Y; Su Y; Gu L; Li J; Yang Y
    J Sci Food Agric; 2021 Aug; 101(11):4691-4698. PubMed ID: 33537985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Chemically and Thermally Treated Oil-in-Water Heteroaggregates and Comparison to Conventional Emulsions.
    Maier C; Reichert CL; Weiss J
    J Food Sci; 2016 Oct; 81(10):E2484-E2491. PubMed ID: 27636707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation on oxidative stability of walnut beverage emulsions.
    Liu S; Liu F; Xue Y; Gao Y
    Food Chem; 2016 Jul; 203():409-416. PubMed ID: 26948632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing Interactions between Lipophilic and Hydrophilic Antioxidants in Food Emulsions.
    Durand E; Zhao Y; Coupland JN; Elias RJ
    J Agric Food Chem; 2015 Dec; 63(49):10655-61. PubMed ID: 26479322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced fish oil-in-water emulsions enabled by rapeseed lecithins obtained under different processing conditions.
    Li J; Pedersen JN; Anankanbil S; Guo Z
    Food Chem; 2018 Oct; 264():233-240. PubMed ID: 29853370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.