BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 37097160)

  • 41. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC; South L; Peng D; Bustamante JM; Wang W; Bunkofske M; Perumal N; Sanchez-Valdez F; Tarleton RL
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114029
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management.
    Allemailem KS; Alsahli MA; Almatroudi A; Alrumaihi F; Alkhaleefah FK; Rahmani AH; Khan AA
    Cancer Commun (Lond); 2022 Dec; 42(12):1257-1287. PubMed ID: 36209487
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor.
    Wang J; Teng Y; Zhang R; Wu Y; Lou L; Zou Y; Li M; Xie ZR; Yan Y
    Nat Commun; 2021 Nov; 12(1):6916. PubMed ID: 34824292
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel and Engineered Type II CRISPR Systems from Uncultivated Microbes with Broad Genome Editing Capability.
    Alexander LM; Aliaga Goltsman DS; Liu J; Lin JL; Temoche-Diaz MM; Laperriere SM; Neerincx A; Bednarski C; Knyphausen P; Cohnen A; Albers J; Gonzalez-Osorio L; Fregoso Ocampo R; Oki J; Devoto AE; Castelle CJ; Lamothe RC; Cost GJ; Butterfield CN; Thomas BC; Brown CT
    CRISPR J; 2023 Jun; 6(3):261-277. PubMed ID: 37272861
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRISPR/Cas genome editing to optimize pharmacologically active plant natural products.
    Dey A
    Pharmacol Res; 2021 Feb; 164():105359. PubMed ID: 33285226
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PAM-less plant genome editing using a CRISPR-SpRY toolbox.
    Ren Q; Sretenovic S; Liu S; Tang X; Huang L; He Y; Liu L; Guo Y; Zhong Z; Liu G; Cheng Y; Zheng X; Pan C; Yin D; Zhang Y; Li W; Qi L; Li C; Qi Y; Zhang Y
    Nat Plants; 2021 Jan; 7(1):25-33. PubMed ID: 33398158
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expanding PAM recognition and enhancing base editing activity of Cas9 variants with non-PI domain mutations derived from xCas9.
    Xie L; Hu Y; Li L; Jiang L; Jiao Y; Wang Y; Zhou L; Tao R; Qu J; Chen Q; Yao S
    FEBS J; 2022 Oct; 289(19):5899-5913. PubMed ID: 35411720
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CRISPR-cas9 genome editing delivery systems for targeted cancer therapy.
    Ghaemi A; Bagheri E; Abnous K; Taghdisi SM; Ramezani M; Alibolandi M
    Life Sci; 2021 Feb; 267():118969. PubMed ID: 33385410
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CRISPR/Cas9-mediated ssDNA Recombineering in
    Liu J; Wang Y; Zheng P; Sun J
    Bio Protoc; 2018 Oct; 8(19):e3038. PubMed ID: 34532515
    [No Abstract]   [Full Text] [Related]  

  • 51. Engineered dual selection for directed evolution of SpCas9 PAM specificity.
    Goldberg GW; Spencer JM; Giganti DO; Camellato BR; Agmon N; Ichikawa DM; Boeke JD; Noyes MB
    Nat Commun; 2021 Jan; 12(1):349. PubMed ID: 33441553
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiplex genome engineering using CRISPR/Cas systems.
    Cong L; Ran FA; Cox D; Lin S; Barretto R; Habib N; Hsu PD; Wu X; Jiang W; Marraffini LA; Zhang F
    Science; 2013 Feb; 339(6121):819-23. PubMed ID: 23287718
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems.
    Chylinski K; Le Rhun A; Charpentier E
    RNA Biol; 2013 May; 10(5):726-37. PubMed ID: 23563642
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Review on the Mechanism and Applications of CRISPR/Cas9/Cas12/Cas13/Cas14 Proteins Utilized for Genome Engineering.
    Hillary VE; Ceasar SA
    Mol Biotechnol; 2023 Mar; 65(3):311-325. PubMed ID: 36163606
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
    Kleinstiver BP; Pattanayak V; Prew MS; Tsai SQ; Nguyen NT; Zheng Z; Joung JK
    Nature; 2016 Jan; 529(7587):490-5. PubMed ID: 26735016
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Palindromic target site identification in SARS-CoV-2, MERS-CoV and SARS-CoV-1 by adopting CRISPR-Cas technique.
    Ghosh N; Saha I; Sharma N
    Gene; 2022 Apr; 818():146136. PubMed ID: 34999179
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The CRISPR-Cas Mechanism for Adaptive Immunity and Alternate Bacterial Functions Fuels Diverse Biotechnologies.
    Newsom S; Parameshwaran HP; Martin L; Rajan R
    Front Cell Infect Microbiol; 2020; 10():619763. PubMed ID: 33585286
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome and transcriptome engineering by compact and versatile CRISPR-Cas systems.
    Aquino-Jarquin G
    Drug Discov Today; 2023 Nov; 28(11):103793. PubMed ID: 37797813
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox.
    Koonin EV; Gootenberg JS; Abudayyeh OO
    Biochemistry; 2023 Dec; 62(24):3465-3487. PubMed ID: 37192099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.