These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37097642)
1. Modeling the Impact of Proportion, Sowing Date, and Architectural Traits of a Companion Crop on Foliar Fungal Pathogens of Wheat in Crop Mixtures. Levionnois S; Pradal C; Fournier C; Sanner J; Robert C Phytopathology; 2023 Oct; 113(10):1876-1889. PubMed ID: 37097642 [TBL] [Abstract][Full Text] [Related]
2. Plant architecture and foliar senescence impact the race between wheat growth and Zymoseptoria tritici epidemics. Robert C; Garin G; Abichou M; Houlès V; Pradal C; Fournier C Ann Bot; 2018 Apr; 121(5):975-989. PubMed ID: 29373663 [TBL] [Abstract][Full Text] [Related]
3. Modelling interaction dynamics between two foliar pathogens in wheat: a multi-scale approach. Garin G; Pradal C; Fournier C; Claessen D; Houlès V; Robert C Ann Bot; 2018 Apr; 121(5):927-940. PubMed ID: 29300857 [TBL] [Abstract][Full Text] [Related]
4. EVIDENCE FOR REDUCED SEXUAL REPRODUCTION OF ZYMOSEPTORIA TRITICI FOLLOWING TREATMENT WITH FLUXAPYROXAD AND IMPLICATIONS FOR INITIAL INFECTION OF WHEAT CROPS. Smith J; Waterhouse S; Paveley N Commun Agric Appl Biol Sci; 2014; 79(3):385-95. PubMed ID: 26080473 [TBL] [Abstract][Full Text] [Related]
5. Using virtual 3-D plant architecture to assess fungal pathogen splash dispersal in heterogeneous canopies: a case study with cultivar mixtures and a non-specialized disease causal agent. Gigot C; de Vallavieille-Pope C; Huber L; Saint-Jean S Ann Bot; 2014 Sep; 114(4):863-75. PubMed ID: 24989786 [TBL] [Abstract][Full Text] [Related]
6. Modelling the effect of wheat canopy architecture as affected by sowing density on Septoria tritici epidemics using a coupled epidemic-virtual plant model. Baccar R; Fournier C; Dornbusch T; Andrieu B; Gouache D; Robert C Ann Bot; 2011 Oct; 108(6):1179-94. PubMed ID: 21724656 [TBL] [Abstract][Full Text] [Related]
7. Analysis and modelling of effects of leaf rust and Septoria tritici blotch on wheat growth. Robert C; Bancal MO; Nicolas P; Lannou C; Ney B J Exp Bot; 2004 May; 55(399):1079-94. PubMed ID: 15073221 [TBL] [Abstract][Full Text] [Related]
8. The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fones H; Gurr S Fungal Genet Biol; 2015 Jun; 79():3-7. PubMed ID: 26092782 [TBL] [Abstract][Full Text] [Related]
9. Differential dynamics of microbial community networks help identify microorganisms interacting with residue-borne pathogens: the case of Zymoseptoria tritici in wheat. Kerdraon L; Barret M; Laval V; Suffert F Microbiome; 2019 Aug; 7(1):125. PubMed ID: 31470910 [TBL] [Abstract][Full Text] [Related]
10. Physiological Traits Determining Yield Tolerance of Wheat to Foliar Diseases. van den Berg F; Paveley ND; Bingham IJ; van den Bosch F Phytopathology; 2017 Dec; 107(12):1468-1478. PubMed ID: 28730873 [TBL] [Abstract][Full Text] [Related]
11. Contrasting plant height can improve the control of rain-borne diseases in wheat cultivar mixture: modelling splash dispersal in 3-D canopies. Vidal T; Gigot C; de Vallavieille-Pope C; Huber L; Saint-Jean S Ann Bot; 2018 Jun; 121(7):1299-1308. PubMed ID: 29579151 [TBL] [Abstract][Full Text] [Related]
12. Novel PCR Assays for the Detection of Biological Agents Responsible for Wheat Rust Diseases: Puccinia triticina and Puccinia striiformis f. sp. tritici. Kuzdraliński A; Kot A; Szczerba H; Ostrowska A; Nowak M; Muszyńska M; Lechowski M; Muzyka P J Mol Microbiol Biotechnol; 2017; 27(5):299-305. PubMed ID: 29183031 [TBL] [Abstract][Full Text] [Related]
13. Distinct Transcriptomic Reprogramming in the Wheat Stripe Rust Fungus During the Initial Infection of Wheat and Barberry. Zhao J; Duan W; Xu Y; Zhang C; Wang L; Wang J; Tian S; Pei G; Zhan G; Zhuang H; Zhao J; Kang Z Mol Plant Microbe Interact; 2021 Feb; 34(2):198-209. PubMed ID: 33118856 [No Abstract] [Full Text] [Related]
15. Modelling wheat growth and yield losses from late epidemics of foliar diseases using loss of green leaf area per layer and pre-anthesis reserves. Bancal MO; Robert C; Ney B Ann Bot; 2007 Oct; 100(4):777-89. PubMed ID: 17686762 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Trait Loci Conferring Leaf Rust Resistance in Hexaploid Wheat. Pinto da Silva GB; Zanella CM; Martinelli JA; Chaves MS; Hiebert CW; McCallum BD; Boyd LA Phytopathology; 2018 Dec; 108(12):1344-1354. PubMed ID: 30211634 [TBL] [Abstract][Full Text] [Related]
17. Influence of Planting Date and Cultivar on Diseases of Spring Durum Wheat. Jbir TG; Crutcher FK; Rickertsen J; Fonseka D; Friskop AJ; Kalil AK Plant Dis; 2022 Dec; 106(12):3083-3090. PubMed ID: 35612573 [TBL] [Abstract][Full Text] [Related]
18. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Chen W; Wellings C; Chen X; Kang Z; Liu T Mol Plant Pathol; 2014 Jun; 15(5):433-46. PubMed ID: 24373199 [TBL] [Abstract][Full Text] [Related]
19. Quantification of the effects of Septoria tritici blotch on wheat leaf gas exchange with respect to lesion age, leaf number, and leaf nitrogen status. Robert C; Bancal MO; Lannou C; Ney B J Exp Bot; 2006; 57(1):225-34. PubMed ID: 15837707 [TBL] [Abstract][Full Text] [Related]
20. Optimal fungicide application timings for disease control are also an effective anti-resistance strategy: a case study for Zymoseptoria tritici (Mycosphaerella graminicola) on wheat. van den Berg F; van den Bosch F; Paveley ND Phytopathology; 2013 Dec; 103(12):1209-19. PubMed ID: 23859011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]