BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3709765)

  • 1. Mitochondrial activity: a possible determinant of anoxic injury in renal medulla.
    Brezis M; Rosen S; Silva P; Spokes K; Epstein FH
    Experientia; 1986 May; 42(5):570-2. PubMed ID: 3709765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disparate mechanisms for hypoxic cell injury in different nephron segments. Studies in the isolated perfused rat kidney.
    Brezis M; Shanley P; Silva P; Spokes K; Lear S; Epstein FH; Rosen S
    J Clin Invest; 1985 Nov; 76(5):1796-806. PubMed ID: 4056054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protection by glycine of proximal tubules from injury due to inhibitors of mitochondrial ATP production.
    Weinberg JM; Davis JA; Abarzua M; Kiani T; Kunkel R
    Am J Physiol; 1990 Jun; 258(6 Pt 1):C1127-40. PubMed ID: 2360621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential responsiveness of proximal tubule segments to metabolic inhibitors in the isolated perfused rat kidney.
    Shanley PF; Brezis M; Spokes K; Silva P; Epstein FH; Rosen S
    Am J Kidney Dis; 1986 Jan; 7(1):76-83. PubMed ID: 3942135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prostaglandin E2 production by renal inner medullary tissue slices: effect of metabolic inhibitors.
    Herman CA; Zenser TV; Davis BB
    Prostaglandins; 1977 Oct; 14(4):679-87. PubMed ID: 594371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A preferential role for glycolysis in preventing the anoxic depolarization of rat hippocampal area CA1 pyramidal cells.
    Allen NJ; Káradóttir R; Attwell D
    J Neurosci; 2005 Jan; 25(4):848-59. PubMed ID: 15673665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective anoxic injury to thick ascending limb: an anginal syndrome of the renal medulla?
    Brezis M; Rosen S; Silva P; Epstein FH
    Adv Exp Med Biol; 1984; 180():239-49. PubMed ID: 6398619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of guanidine derivatives and oligomycin on swelling of rat liver mitochondria.
    Bhuvaneswaran C; Dakshinamurti K
    Biochemistry; 1970 Dec; 9(26):5070-6. PubMed ID: 5482651
    [No Abstract]   [Full Text] [Related]  

  • 9. Kidney outer medulla mitochondria are more efficient compared with cortex mitochondria as a strategy to sustain ATP production in a suboptimal environment.
    Schiffer TA; Gustafsson H; Palm F
    Am J Physiol Renal Physiol; 2018 Sep; 315(3):F677-F681. PubMed ID: 29846107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of respiratory inhibitors on glycolysis in proximal tubules.
    Dickman KG; Mandel LJ
    Am J Physiol; 1990 Jun; 258(6 Pt 2):F1608-15. PubMed ID: 2163215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and clinical implications of medullary hypoxia.
    Epstein FH; Brezis M; Silva P; Rosen S
    Artif Organs; 1987 Dec; 11(6):463-7. PubMed ID: 3439909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bioenergetic explanation for the selective vulnerability of renal medullary tubules to hypoxia.
    Torikai S
    Clin Sci (Lond); 1988 Sep; 75(3):323-30. PubMed ID: 3416564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase of sodium delivery stimulates the mitochondrial respiratory chain H2O2 production in rat renal medullary thick ascending limb.
    Ohsaki Y; O'Connor P; Mori T; Ryan RP; Dickinson BC; Chang CJ; Lu Y; Ito S; Cowley AW
    Am J Physiol Renal Physiol; 2012 Jan; 302(1):F95-F102. PubMed ID: 21975873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of calcium with mitochondria during calcium flux.
    Rossi CS; Alexandre A; Rossi CR
    FEBS Lett; 1974 Aug; 43(3):349-52. PubMed ID: 4413925
    [No Abstract]   [Full Text] [Related]  

  • 15. Steroid hydroxylations in rat adrenal mitochondria. 3. The ATP-steroid-oxygen stoichiometry of ATP-dependent steroid hydroxylation.
    Sauer LA
    Biochim Biophys Acta; 1971 May; 234(2):287-92. PubMed ID: 4398037
    [No Abstract]   [Full Text] [Related]  

  • 16. K+-dependent rebounds and oscillations in respiration-linked movements of CA++ and H+ in rat liver mitochondria.
    Carafoli E; Gamble RL; Lehninger AL
    Biochem Biophys Res Commun; 1965 Dec; 21(5):488-93. PubMed ID: 5880526
    [No Abstract]   [Full Text] [Related]  

  • 17. Metabolic arrest and its regulation in anoxic eel hepatocytes.
    Busk M; Boutilier RG
    Physiol Biochem Zool; 2005; 78(6):926-36. PubMed ID: 16228932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the nature of electron and energy transport in mitochondria. I. Multiple inhibition of mitochondrial respiration.
    Nijs P
    Biochim Biophys Acta; 1967; 143(3):454-61. PubMed ID: 6078110
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparative studies of the ADP-ATP and the Pi-ATP exchange reactions related to oxidative phosphorylation in rat-liver mitochondria.
    Groot GS
    Biochim Biophys Acta; 1969 Aug; 180(3):439-44. PubMed ID: 5810845
    [No Abstract]   [Full Text] [Related]  

  • 20. Metabolic inhibitors: effects on metabolism and transport in the proximal tubule.
    Gullans SR; Brazy PC; Soltoff SP; Dennis VW; Mandel LJ
    Am J Physiol; 1982 Aug; 243(2):F133-40. PubMed ID: 7114212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.