These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 37097940)
1. Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Fabiani G; Galaris E; Russo L; Siettos C Chaos; 2023 Apr; 33(4):. PubMed ID: 37097940 [TBL] [Abstract][Full Text] [Related]
2. Physics-informed neural networks and functional interpolation for stiff chemical kinetics. De Florio M; Schiassi E; Furfaro R Chaos; 2022 Jun; 32(6):063107. PubMed ID: 35778155 [TBL] [Abstract][Full Text] [Related]
3. Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks. Karnakov P; Litvinov S; Koumoutsakos P PNAS Nexus; 2024 Jan; 3(1):pgae005. PubMed ID: 38250513 [TBL] [Abstract][Full Text] [Related]
4. Quantitative analysis of numerical solvers for oscillatory biomolecular system models. Quo CF; Wang MD BMC Bioinformatics; 2008 May; 9 Suppl 6(Suppl 6):S17. PubMed ID: 18541052 [TBL] [Abstract][Full Text] [Related]
5. Can physics-informed neural networks beat the finite element method? Grossmann TG; Komorowska UJ; Latz J; Schönlieb CB IMA J Appl Math; 2024 Jan; 89(1):143-174. PubMed ID: 38933736 [TBL] [Abstract][Full Text] [Related]
6. Accelerating Neural ODEs Using Model Order Reduction. Lehtimaki M; Paunonen L; Linne ML IEEE Trans Neural Netw Learn Syst; 2024 Jan; 35(1):519-531. PubMed ID: 35617183 [TBL] [Abstract][Full Text] [Related]
7. Stiff neural ordinary differential equations. Kim S; Ji W; Deng S; Ma Y; Rackauckas C Chaos; 2021 Sep; 31(9):093122. PubMed ID: 34598467 [TBL] [Abstract][Full Text] [Related]
8. Multiscale Physics-Informed Neural Networks for Stiff Chemical Kinetics. Weng Y; Zhou D J Phys Chem A; 2022 Nov; 126(45):8534-8543. PubMed ID: 36322833 [TBL] [Abstract][Full Text] [Related]
9. A Second-Order Network Structure Based on Gradient-Enhanced Physics-Informed Neural Networks for Solving Parabolic Partial Differential Equations. Sun K; Feng X Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190465 [TBL] [Abstract][Full Text] [Related]
10. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers? Markidis S Front Big Data; 2021; 4():669097. PubMed ID: 34870188 [TBL] [Abstract][Full Text] [Related]
11. Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics. Ji W; Qiu W; Shi Z; Pan S; Deng S J Phys Chem A; 2021 Sep; 125(36):8098-8106. PubMed ID: 34463510 [TBL] [Abstract][Full Text] [Related]
12. Optical neural ordinary differential equations. Zhao Y; Chen H; Lin M; Zhang H; Yan T; Huang R; Lin X; Dai Q Opt Lett; 2023 Feb; 48(3):628-631. PubMed ID: 36723549 [TBL] [Abstract][Full Text] [Related]
13. Parallel Solution of Nonlinear Projection Equations in a Multitask Learning Framework. Wu D; Lisser A IEEE Trans Neural Netw Learn Syst; 2024 Jan; PP():. PubMed ID: 38261500 [TBL] [Abstract][Full Text] [Related]
14. An improved data-free surrogate model for solving partial differential equations using deep neural networks. Chen X; Chen R; Wan Q; Xu R; Liu J Sci Rep; 2021 Sep; 11(1):19507. PubMed ID: 34593943 [TBL] [Abstract][Full Text] [Related]
15. A pretraining domain decomposition method using artificial neural networks to solve elliptic PDE boundary value problems. Seo JK Sci Rep; 2022 Aug; 12(1):13939. PubMed ID: 35978098 [TBL] [Abstract][Full Text] [Related]
17. HomPINNs: homotopy physics-informed neural networks for solving the inverse problems of nonlinear differential equations with multiple solutions. Zheng H; Huang Y; Huang Z; Hao W; Lin G J Comput Phys; 2024 Mar; 500():. PubMed ID: 38283188 [TBL] [Abstract][Full Text] [Related]
18. Time-stepping techniques to enable the simulation of bursting behavior in a physiologically realistic computational islet. Khuvis S; Gobbert MK; Peercy BE Math Biosci; 2015 May; 263():1-17. PubMed ID: 25688913 [TBL] [Abstract][Full Text] [Related]
19. Solving the initial value problem of ordinary differential equations by Lie group based neural network method. Wen Y; Chaolu T; Wang X PLoS One; 2022; 17(4):e0265992. PubMed ID: 35385507 [TBL] [Abstract][Full Text] [Related]
20. Physics-informed kernel function neural networks for solving partial differential equations. Fu Z; Xu W; Liu S Neural Netw; 2024 Apr; 172():106098. PubMed ID: 38199153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]