These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37097940)

  • 1. Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs.
    Fabiani G; Galaris E; Russo L; Siettos C
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physics-informed neural networks and functional interpolation for stiff chemical kinetics.
    De Florio M; Schiassi E; Furfaro R
    Chaos; 2022 Jun; 32(6):063107. PubMed ID: 35778155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of numerical solvers for oscillatory biomolecular system models.
    Quo CF; Wang MD
    BMC Bioinformatics; 2008 May; 9 Suppl 6(Suppl 6):S17. PubMed ID: 18541052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerating Neural ODEs Using Model Order Reduction.
    Lehtimaki M; Paunonen L; Linne ML
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; 35(1):519-531. PubMed ID: 35617183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stiff neural ordinary differential equations.
    Kim S; Ji W; Deng S; Ma Y; Rackauckas C
    Chaos; 2021 Sep; 31(9):093122. PubMed ID: 34598467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale Physics-Informed Neural Networks for Stiff Chemical Kinetics.
    Weng Y; Zhou D
    J Phys Chem A; 2022 Nov; 126(45):8534-8543. PubMed ID: 36322833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
    Markidis S
    Front Big Data; 2021; 4():669097. PubMed ID: 34870188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics.
    Ji W; Qiu W; Shi Z; Pan S; Deng S
    J Phys Chem A; 2021 Sep; 125(36):8098-8106. PubMed ID: 34463510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical neural ordinary differential equations.
    Zhao Y; Chen H; Lin M; Zhang H; Yan T; Huang R; Lin X; Dai Q
    Opt Lett; 2023 Feb; 48(3):628-631. PubMed ID: 36723549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved data-free surrogate model for solving partial differential equations using deep neural networks.
    Chen X; Chen R; Wan Q; Xu R; Liu J
    Sci Rep; 2021 Sep; 11(1):19507. PubMed ID: 34593943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-informed attention-based neural network for hyperbolic partial differential equations: application to the Buckley-Leverett problem.
    Rodriguez-Torrado R; Ruiz P; Cueto-Felgueroso L; Green MC; Friesen T; Matringe S; Togelius J
    Sci Rep; 2022 May; 12(1):7557. PubMed ID: 35534639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pretraining domain decomposition method using artificial neural networks to solve elliptic PDE boundary value problems.
    Seo JK
    Sci Rep; 2022 Aug; 12(1):13939. PubMed ID: 35978098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Estimation of Parameters in ODE Models Using WENDy: Weak-form Estimation of Nonlinear Dynamics.
    Bortz DM; Messenger DA; Dukic V
    ArXiv; 2023 Apr; ():. PubMed ID: 36911272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-stepping techniques to enable the simulation of bursting behavior in a physiologically realistic computational islet.
    Khuvis S; Gobbert MK; Peercy BE
    Math Biosci; 2015 May; 263():1-17. PubMed ID: 25688913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solving the initial value problem of ordinary differential equations by Lie group based neural network method.
    Wen Y; Chaolu T; Wang X
    PLoS One; 2022; 17(4):e0265992. PubMed ID: 35385507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method.
    Benhammouda B
    Springerplus; 2016; 5():590. PubMed ID: 27330880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring Inductive Linearization for simulation and estimation with an application to the Michaelis-Menten model.
    Sharif S; Hasegawa C; Duffull SB
    J Pharmacokinet Pharmacodyn; 2022 Aug; 49(4):445-453. PubMed ID: 35788853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution of nonlinear higher-index Hessenberg DAEs by Adomian polynomials and differential transform method.
    Benhammouda B
    Springerplus; 2015; 4():648. PubMed ID: 26543782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient method-of-lines simulation procedure for organic semiconductor devices.
    Rogel-Salazar J; Bradley DD; Cash JR; Demello JC
    Phys Chem Chem Phys; 2009 Mar; 11(10):1636-46. PubMed ID: 19240942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regularization of nonlinear decomposition of spectral x-ray projection images.
    Ducros N; Abascal JFP; Sixou B; Rit S; Peyrin F
    Med Phys; 2017 Sep; 44(9):e174-e187. PubMed ID: 28901616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.