These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37097959)

  • 1. Solitonic-like interactions of counter-propagating clusters of active particles.
    Escaff D
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutually induced soliton polarization instability in a bidirectional ultrafast fiber laser.
    Yang K; Li TJ; Li XD; Chen JX; Liu M; Cui H; Luo AP; Xu WC; Luo ZC
    Opt Lett; 2021 Oct; 46(19):4848-4851. PubMed ID: 34598215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collisions of non-explosive dissipative solitons can induce explosions.
    Descalzi O; Brand HR
    Chaos; 2018 Jul; 28(7):075508. PubMed ID: 30070503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Patterns of Dissipative Polariton Solitons in Semiconductor Microcavities.
    Chana JK; Sich M; Fras F; Gorbach AV; Skryabin DV; Cancellieri E; Cerda-Méndez EA; Biermann K; Hey R; Santos PV; Skolnick MS; Krizhanovskii DN
    Phys Rev Lett; 2015 Dec; 115(25):256401. PubMed ID: 26722931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase separation and emergence of collective motion in a one-dimensional system of active particles.
    Barberis L; Peruani F
    J Chem Phys; 2019 Apr; 150(14):144905. PubMed ID: 30981266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flocking without Alignment Interactions in Attractive Active Brownian Particles.
    Caprini L; Löwen H
    Phys Rev Lett; 2023 Apr; 130(14):148202. PubMed ID: 37084461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.
    Alarcón F; Valeriani C; Pagonabarraga I
    Soft Matter; 2017 Jan; 13(4):814-826. PubMed ID: 28066850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organized vortices of circling self-propelled particles and curved active flagella.
    Yang Y; Qiu F; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012720. PubMed ID: 24580270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flocking transition within the framework of Kuramoto paradigm for synchronization: Clustering and the role of the range of interaction.
    Escaff D; Delpiano R
    Chaos; 2020 Aug; 30(8):083137. PubMed ID: 32872818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entrainment, stopping, and transmission of microwave solitons of self-induced transparency in counter-propagating magnetized electron beam.
    Sergeev AS; Yurovskiy LA; Ginzburg NS; Zotova IV; Zheleznov IV; Rozental RM; Rostuntsova AA; Ryskin NM
    Chaos; 2022 May; 32(5):053123. PubMed ID: 35649993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective motion of active Brownian particles with polar alignment.
    Martín-Gómez A; Levis D; Díaz-Guilera A; Pagonabarraga I
    Soft Matter; 2018 Apr; 14(14):2610-2618. PubMed ID: 29569673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A continuous-time persistent random walk model for flocking.
    Escaff D; Toral R; Van den Broeck C; Lindenberg K
    Chaos; 2018 Jul; 28(7):075507. PubMed ID: 30070507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-organization in two-dimensional swarms.
    Touma JR; Shreim A; Klushin LI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066106. PubMed ID: 20866477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active dipole clusters: From helical motion to fission.
    Kaiser A; Popowa K; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012301. PubMed ID: 26274156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuations and pattern formation in self-propelled particles.
    Mishra S; Baskaran A; Marchetti MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061916. PubMed ID: 20866449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of self-propulsion on equilibrium clustering.
    Mani E; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032301. PubMed ID: 26465467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creating solitons with controllable and near-zero velocity in Bose-Einstein condensates.
    Fritsch AR; Lu M; Reid GH; Piñeiro AM; Spielman IB
    Phys Rev A (Coll Park); 2020 May; 101(5):. PubMed ID: 34136731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion of a self-propelled particle with rotational inertia.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2022 Jun; 24(23):14150-14158. PubMed ID: 35648110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of Collective Motion in a Model of Interacting Brownian Particles.
    Dossetti V; Sevilla FJ
    Phys Rev Lett; 2015 Jul; 115(5):058301. PubMed ID: 26274444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.