These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37098369)

  • 1. Activity of Na
    Yammine A; Auezova L; Lizard G; Greige-Gerges H
    Biochimie; 2023 Sep; 212():95-105. PubMed ID: 37098369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol modulation of transmembrane cation transport systems in human erythrocytes.
    Lijnen P; Petrov V
    Biochem Mol Med; 1995 Oct; 56(1):52-62. PubMed ID: 8593538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [HPLC method for measuring (Na(+)-K(+)) ATPase and (Ca(++)-Mg(++)) ATPase in erythrocytes from different species of mammals].
    Palma F; Ligi F; Soverchia C; Fioritti A
    Boll Soc Ital Biol Sper; 1991 Aug; 67(8):759-66. PubMed ID: 1667079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptic adenosine triphosphatase activities in plasma membranes of CCl4-cirrhotic rats. Its modulation by changes in cholesterol/phospholipid ratios.
    Yahuaca P; Amaya A; Rojkind M; Mourelle M
    Lab Invest; 1985 Nov; 53(5):541-5. PubMed ID: 2997543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased Na+/K+-ATPase Activity and Altered Susceptibility to Peroxidation and Lipid Composition in the Erythrocytes of Metabolic Syndrome Patients with Coronary Artery Disease.
    Namazi G; Asa P; Sarrafzadegan N; Pourfarzam M
    Ann Nutr Metab; 2019; 74(2):140-148. PubMed ID: 30731468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The change of cholesterol level and Na+ -K+ -ATPase activity of erythrocyte membrane in early stage of severe burn patients].
    Lv DL; Cui F; Li XN
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2002 Nov; 18(4):391-3. PubMed ID: 21174825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation of erythrocyte Na+-K+ ATPase activity and cholesterol and oxidative stress in patients with type 2 diabetes mellitus.
    Konukoglu D; Kemerli GD; Sabuncu T; Hatemi H
    Clin Invest Med; 2003 Dec; 26(6):279-84. PubMed ID: 14690302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decreased activity of Ca(++)-ATPase and Na(+)/K(+)-ATPase during aging in humans.
    Maurya PK; Prakash S
    Appl Biochem Biotechnol; 2013 May; 170(1):131-7. PubMed ID: 23483411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythrocyte membrane lipids and cationic transport systems in men.
    Lijnen P; Fagard R; Staessen J; Thijs L; Amery A
    J Hypertens; 1992 Oct; 10(10):1205-11. PubMed ID: 1335002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Platelet and erythrocyte Mg2+, Ca2+, Na+, K+ and cell membrane adenosine triphosphatase activity in essential hypertension in blacks.
    Touyz RM; Milne FJ; Reinach SG
    J Hypertens; 1992 Jun; 10(6):571-8. PubMed ID: 1320078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane cationic fluxes in erythrocytes of diabetics and normal men.
    Lijnen P; Fenyvesi A
    Methods Find Exp Clin Pharmacol; 1994; 16(1):37-47. PubMed ID: 8164472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of erythrocyte (Na+-K+)ATPase activity in type 1 (insulin-dependent) diabetic subjects and its activation by homologous plasma.
    Finotti P; Palatini P
    Diabetologia; 1986 Sep; 29(9):623-8. PubMed ID: 3025045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of captopril on Na-K ATPase and Mg ATPase activities of erythrocyte ghost membranes.
    Santoro FM; de la Riva IJ
    Pharmacol Res Commun; 1985 Apr; 17(4):323-30. PubMed ID: 2989952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatile anesthetics selectively inhibit the Ca(2+)-transporting ATPase in neuronal and erythrocyte plasma membranes.
    Fomitcheva I; Kosk-Kosicka D
    Anesthesiology; 1996 May; 84(5):1189-95. PubMed ID: 8624013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sialic acid, diabetes, and aging: a study on the erythrocyte membrane.
    Mazzanti L; Rabini RA; Salvolini E; Tesei M; Martarelli D; Venerando B; Curatola G
    Metabolism; 1997 Jan; 46(1):59-61. PubMed ID: 9005970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S-adenosyl-L-methionine prevents and reverses erythrocyte membrane alterations in cirrhosis.
    Muriel P
    J Appl Toxicol; 1993; 13(3):179-82. PubMed ID: 8392094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of quercetin on Na(+)-K(+)-exchanging ATPase and Ca(2+) Mg(2+)-ATPase in rats.
    Gu ZL; Xiao D; Jin LQ; Fan PS; Qian ZN
    Zhongguo Yao Li Xue Bao; 1994 Sep; 15(5):414-6. PubMed ID: 7717064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na⁺, K⁺-ATPase and Ca²⁺-ATPase activities in basal and microvillous syncytiotrophoblast membranes from preeclamptic human term placenta.
    Abad C; Vallejos C; De Gregorio N; Díaz P; Chiarello DI; Mendoza M; Piñero S; Proverbio T; Botana D; Rojas P; Riquelme G; Proverbio F; Marín R
    Hypertens Pregnancy; 2015 Feb; 34(1):65-79. PubMed ID: 25356531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythrocyte membrane digoxin-sensitive (Na(+)-K+)-ATPase of non-insulin dependent diabetic humans.
    Okegbile EO; Odusan O; Adeola O
    Biosci Rep; 1997 Oct; 17(5):499-506. PubMed ID: 9419391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of Fatty Acid Methyl Esters (FAMEs) in the Biochemistry and the Na(+)/K(+)-ATPase Activity of Culex quinquefasciatus Larvae.
    Silva LN; Ribeiro-Neto JA; Valadares JM; Costa MM; Lima LA; Grillo LA; Cortes VF; Santos HL; Alves SN; Barbosa LA
    J Membr Biol; 2016 Aug; 249(4):459-67. PubMed ID: 26993642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.