BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37098433)

  • 1. Effect of oil exposure stages on the heat resistance of Salmonella enterica serovar Enteritidis phage type 30 in peanut flour.
    Liu S; Qiu Y; Ji K; Ozturk S; Erdoğdu F; Qin W; Yang R; Wu Q
    Food Microbiol; 2023 Aug; 113():104275. PubMed ID: 37098433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of rapid product desiccation or hydration on thermal resistance of Salmonella enterica serovar enteritidis PT 30 in wheat flour.
    Smith DF; Marks BP
    J Food Prot; 2015 Feb; 78(2):281-6. PubMed ID: 25710142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exponentially Increased Thermal Resistance of Salmonella spp. and Enterococcus faecium at Reduced Water Activity.
    Liu S; Tang J; Tadapaneni RK; Yang R; Zhu MJ
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439987
    [No Abstract]   [Full Text] [Related]  

  • 4. Thermal death kinetics of Salmonella Enteritidis PT30 in peanut butter as influenced by water activity.
    Yang R; Wei L; Dai J; Tang J
    Food Res Int; 2022 Jul; 157():111288. PubMed ID: 35761596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the effect of protein and fat on the thermal resistance of Salmonella enterica Enteritidis PT 30 in egg powders.
    Zhang Y; Pérez-Reyes ME; Qin W; Hu B; Wu Q; Liu S
    Food Res Int; 2022 May; 155():111098. PubMed ID: 35400471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enterococcus faecium as a Salmonella surrogate in the thermal processing of wheat flour: Influence of water activity at high temperatures.
    Liu S; Rojas RV; Gray P; Zhu MJ; Tang J
    Food Microbiol; 2018 Sep; 74():92-99. PubMed ID: 29706342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced heat tolerance of freeze-dried Enterococcus faecium NRRL B-2354 as valid Salmonella surrogate in low-moisture foods.
    Liu S; Qiu Y; Su G; Sheng L; Qin W; Ye Q; Wu Q
    Food Res Int; 2023 Nov; 173(Pt 1):113232. PubMed ID: 37803547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in cellular structure of heat-treated Salmonella in low-moisture environments.
    Xu J; Shah DH; Song J; Tang J
    J Appl Microbiol; 2020 Aug; 129(2):434-442. PubMed ID: 32052556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Inactivation of Salmonella enterica and Nonpathogenic Bacterial Surrogates in Wheat Flour by Baking in a Household Oven.
    Jung J; Schaffner DW
    J Food Prot; 2022 Oct; 85(10):1431-1438. PubMed ID: 35880899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moisture Content of Bacterial Cells Determines Thermal Resistance of Salmonella enterica Serotype Enteritidis PT 30.
    Xie Y; Xu J; Yang R; Alshammari J; Zhu MJ; Sablani S; Tang J
    Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33158899
    [No Abstract]   [Full Text] [Related]  

  • 11. Modeling the Effect of Temperature and Water Activity on the Thermal Resistance of Salmonella Enteritidis PT 30 in Wheat Flour.
    Smith DF; Hildebrandt IM; Casulli KE; Dolan KD; Marks BP
    J Food Prot; 2016 Dec; 79(12):2058-2065. PubMed ID: 28221962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of Acidified Oils against
    Ghoshal M; Chuang S; Zhang Y; McLandsborough L
    Appl Environ Microbiol; 2022 Aug; 88(16):e0093522. PubMed ID: 35938829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interlaboratory Evaluation of Enterococcus faecium NRRL B-2354 as a Salmonella Surrogate for Validating Thermal Treatment of Multiple Low-Moisture Foods.
    Ahmad NH; Hildebrandt IM; Pickens SR; Vasquez S; Jin Y; Liu S; Halik LA; Tsai HC; Lau SK; D'Souza RC; Kumar S; Subbiah J; Thippareddi H; Zhu MJ; Tang J; Anderson NM; Grasso-Kelley EM; Ryser ET; Marks BP
    J Food Prot; 2022 Nov; 85(11):1538-1552. PubMed ID: 35723555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Desiccation in oil protects bacteria in thermal processing.
    Yang R; Xu J; Lombardo SP; Ganjyal GM; Tang J
    Food Res Int; 2020 Nov; 137():109519. PubMed ID: 33233153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inoculation Protocols Influence the Thermal Resistance of Salmonella Enteritidis PT 30 in Fabricated Almond, Wheat, and Date Products.
    Limcharoenchat P; Buchholz SE; James MK; Hall NO; Ryser ET; Marks BP
    J Food Prot; 2018 Apr; 81(4):606-613. PubMed ID: 29528705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of water activity on the heat resistance of Salmonella enterica in selected low-moisture foods.
    Gautam B; Govindan BN; Gӓnzle M; Roopesh MS
    Int J Food Microbiol; 2020 Dec; 334():108813. PubMed ID: 32841809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oil-Based Sanitization in Low-Moisture Environments: Delivery of Acetic Acid with Water-in-Oil Emulsions.
    Chuang S; Ghoshal M; McLandsborough L
    Microbiol Spectr; 2023 Jun; 11(3):e0529322. PubMed ID: 37017552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of low water activity on the thermal resistance of
    Pérez-Reyes ME; Jie X; Zhu MJ; Tang J; Barbosa-Cánovas GV
    Food Sci Technol Int; 2021 Mar; 27(2):184-193. PubMed ID: 32703024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat tolerance of Salmonella enterica serovars Agona, Enteritidis, and Typhimurium in peanut butter.
    Shachar D; Yaron S
    J Food Prot; 2006 Nov; 69(11):2687-91. PubMed ID: 17133812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heating Rate during Shell Egg Thermal Treatment Elicits Stress Responses and Alters Virulence of Salmonella enterica Serovar Enteritidis; Implications for Shell Egg Pasteurization.
    Xu Y; Abdelhamid AG; Sabag-Daigle A; Ahmer BMM; Yousef AE
    Appl Environ Microbiol; 2022 Oct; 88(20):e0114022. PubMed ID: 36197091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.