These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37098631)

  • 1. Key Role of Choline Head Groups in Large Unilamellar Phospholipid Vesicles for the Interaction with and Rupture by Silica Nanoparticles.
    Leibe R; Fritsch-Decker S; Gussmann F; Wagbo AM; Wadhwani P; Diabaté S; Wenzel W; Ulrich AS; Weiss C
    Small; 2023 Aug; 19(34):e2207593. PubMed ID: 37098631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic particles: optimization of phospholipid bilayer coverage on silica and colloid stabilization.
    Moura SP; Carmona-Ribeiro AM
    Langmuir; 2005 Oct; 21(22):10160-4. PubMed ID: 16229540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coverage and disruption of phospholipid membranes by oxide nanoparticles.
    Pera H; Nolte TM; Leermakers FA; Kleijn JM
    Langmuir; 2014 Dec; 30(48):14581-90. PubMed ID: 25390582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of SiO2 nanoparticles on phospholipid membrane integrity and fluidity.
    Wei X; Jiang W; Yu J; Ding L; Hu J; Jiang G
    J Hazard Mater; 2015 Apr; 287():217-24. PubMed ID: 25661168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass.
    Benes M; Billy D; Benda A; Speijer H; Hof M; Hermens WT
    Langmuir; 2004 Nov; 20(23):10129-37. PubMed ID: 15518504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Softening of phospholipid membranes by the adhesion of silica nanoparticles--as seen by neutron spin-echo (NSE).
    Hoffmann I; Michel R; Sharp M; Holderer O; Appavou MS; Polzer F; Farago B; Gradzielski M
    Nanoscale; 2014 Jun; 6(12):6945-52. PubMed ID: 24838980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling Interactions between Ionic Liquids and Phospholipid Vesicles Using Nanoplasmonic Sensing.
    Witos J; Russo G; Ruokonen SK; Wiedmer SK
    Langmuir; 2017 Jan; 33(4):1066-1076. PubMed ID: 28068104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between silica nanoparticles and phospholipid membranes.
    Kettiger H; Québatte G; Perrone B; Huwyler J
    Biochim Biophys Acta; 2016 Sep; 1858(9):2163-2170. PubMed ID: 27349734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic particles for isolation and reconstitution of receptor function.
    Moura SP; Carmona-Ribeiro AM
    Cell Biochem Biophys; 2006; 44(3):446-52. PubMed ID: 16679532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Onion phases as biomimetic confined media for silica nanoparticle growth.
    El Rassy H; Belamie E; Livage J; Coradin T
    Langmuir; 2005 Sep; 21(19):8584-7. PubMed ID: 16142930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-Chain Lipids Facilitate Insertion of Large Nanoparticles into Membranes of Small Unilamellar Vesicles.
    Marzouq A; Morgenstein L; Huang-Zhu CA; Yudovich S; Atkins A; Grupi A; Van Lehn RC; Weiss S
    Langmuir; 2024 May; 40(20):10477-10485. PubMed ID: 38710504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous Rate Constant for Amorphous Silica Nanoparticle Adsorption on Phospholipid Monolayers.
    Vakurov A; Drummond-Brydson R; William N; Sanver D; Bastús N; Moriones OH; Puntes V; Nelson AL
    Langmuir; 2022 May; 38(18):5372-5380. PubMed ID: 35471829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of lipid coating on the interaction between silica nanoparticles and membranes.
    Tada DB; Suraniti E; Rossi LM; Leite CA; Oliveira CS; Tumolo TC; Calemczuk R; Livache T; Baptista MS
    J Biomed Nanotechnol; 2014 Mar; 10(3):519-28. PubMed ID: 24730247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle Wettability Influences Nanoparticle-Phospholipid Interactions.
    Konduru NV; Damiani F; Stoilova-McPhie S; Tresback JS; Pyrgiotakis G; Donaghey TC; Demokritou P; Brain JD; Molina RM
    Langmuir; 2018 Jun; 34(22):6454-6461. PubMed ID: 29754486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesion signals of phospholipid vesicles at an electrified interface.
    DeNardis NI; Žutić V; Svetličić V; Frkanec R
    J Membr Biol; 2012 Sep; 245(9):573-82. PubMed ID: 22811281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications.
    Michel R; Gradzielski M
    Int J Mol Sci; 2012; 13(9):11610-11642. PubMed ID: 23109874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithographically defined macroscale modulation of lateral fluidity and phase separation realized via patterned nanoporous silica-supported phospholipid bilayers.
    Kendall EL; Ngassam VN; Gilmore SF; Brinker CJ; Parikh AN
    J Am Chem Soc; 2013 Oct; 135(42):15718-21. PubMed ID: 24111800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of anionic phospholipid coatings on silica by dissipative quartz crystal microbalance.
    Viitala T; Hautala JT; Vuorinen J; Wiedmer SK
    Langmuir; 2007 Jan; 23(2):609-18. PubMed ID: 17209612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between selected photosensitizers and model membranes: an NMR classification.
    Marzorati M; Bigler P; Vermathen M
    Biochim Biophys Acta; 2011 Jun; 1808(6):1661-72. PubMed ID: 21334303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Native silica nanoparticles are powerful membrane disruptors.
    Alkhammash HI; Li N; Berthier R; de Planque MR
    Phys Chem Chem Phys; 2015 Jun; 17(24):15547-60. PubMed ID: 25623776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.