These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37098822)

  • 1. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials.
    Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C
    Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga
    Liu YB; Yang JY; Xin GM; Liu LH; Csányi G; Cao BY
    J Chem Phys; 2020 Oct; 153(14):144501. PubMed ID: 33086840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity of h-BN monolayers using machine learning interatomic potential.
    Zhang Y; Shen C; Long T; Zhang H
    J Phys Condens Matter; 2021 Mar; 33(10):105903. PubMed ID: 33260161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of finite-temperature and anharmonic lattice dynamics on the thermal conductivity of ZrS
    Pandit A; Hamad B
    J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34315140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of empirical interatomic potential to predict thermal conductivity in ThO
    Jin M; Khafizov M; Jiang C; Zhou S; Marianetti CA; Bryan MS; Manley ME; Hurley DH
    J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 33455948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferability of interatomic potentials for silicene.
    Maździarz M
    Beilstein J Nanotechnol; 2023; 14():574-585. PubMed ID: 37200833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general-purpose machine learning Pt interatomic potential for an accurate description of bulk, surfaces, and nanoparticles.
    Kloppenburg J; Pártay LB; Jónsson H; Caro MA
    J Chem Phys; 2023 Apr; 158(13):134704. PubMed ID: 37031153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning interatomic potential for silicon-nitride (Si3N4) by active learning.
    Milardovich D; Wilhelmer C; Waldhoer D; Cvitkovich L; Sivaraman G; Grasser T
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anharmonic Vibrational States of Solids from DFT Calculations. Part I: Description of the Potential Energy Surface.
    Erba A; Maul J; Ferrabone M; Carbonnière P; Rérat M; Dovesi R
    J Chem Theory Comput; 2019 Jun; 15(6):3755-3765. PubMed ID: 31038943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine-Learning Interatomic Potentials.
    Mortazavi B; Silani M; Podryabinkin EV; Rabczuk T; Zhuang X; Shapeev AV
    Adv Mater; 2021 Sep; 33(35):e2102807. PubMed ID: 34296779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correcting force error-induced underestimation of lattice thermal conductivity in machine learning molecular dynamics.
    Wu X; Zhou W; Dong H; Ying P; Wang Y; Song B; Fan Z; Xiong S
    J Chem Phys; 2024 Jul; 161(1):. PubMed ID: 38949595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Free Energy Barriers for Heterogeneous Catalytic Reactions with Machine Learning Potentials and Umbrella Integration.
    Stocker S; Jung H; Csányi G; Goldsmith CF; Reuter K; Margraf JT
    J Chem Theory Comput; 2023 Oct; 19(19):6796-6804. PubMed ID: 37747812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An accurate and transferable machine learning potential for carbon.
    Rowe P; Deringer VL; Gasparotto P; Csányi G; Michaelides A
    J Chem Phys; 2020 Jul; 153(3):034702. PubMed ID: 32716159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a simplified description of thermoelectric materials: accuracy of approximate density functional theory for phonon dispersions.
    Niehaus TA; Melissen STAG; Aradi B; Vaez Allaei SM
    J Phys Condens Matter; 2019 Oct; 31(39):395901. PubMed ID: 31261140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance and Cost Assessment of Machine Learning Interatomic Potentials.
    Zuo Y; Chen C; Li X; Deng Z; Chen Y; Behler J; Csányi G; Shapeev AV; Thompson AP; Wood MA; Ong SP
    J Phys Chem A; 2020 Jan; 124(4):731-745. PubMed ID: 31916773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of molecular dynamics potentials used to account for thermal diffuse scattering in multislice simulations.
    Chen X; Kim DS; LeBeau JM
    Ultramicroscopy; 2023 Feb; 244():113644. PubMed ID: 36410085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast access of the lattice thermal conductivity and phonon quasiparticle spectra of Mo
    Qiu Y; Jing Z; Liu H; He H; Wu K; Cheng Y; Xiao B
    Nanoscale; 2024 Apr; 16(15):7645-7659. PubMed ID: 38529611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio phonon properties of half-Heusler NiTiSn, NiZrSn and NiHfSn.
    Andrea L; Hug G; Chaput L
    J Phys Condens Matter; 2015 Oct; 27(42):425401. PubMed ID: 26441218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting the thermal conductivity of Si, Ge and diamond from first principles: roles of atomic mass and interatomic potential.
    Guo G; Yang X; Carrete J; Li W
    J Phys Condens Matter; 2021 May; 33(28):. PubMed ID: 33930883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-temperature phonon transport properties of SnSe from machine-learning interatomic potential.
    Liu H; Qian X; Bao H; Zhao CY; Gu X
    J Phys Condens Matter; 2021 Jul; 33(40):. PubMed ID: 34256365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.