These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 37098822)

  • 1. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials.
    Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C
    Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga
    Liu YB; Yang JY; Xin GM; Liu LH; Csányi G; Cao BY
    J Chem Phys; 2020 Oct; 153(14):144501. PubMed ID: 33086840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity of h-BN monolayers using machine learning interatomic potential.
    Zhang Y; Shen C; Long T; Zhang H
    J Phys Condens Matter; 2021 Mar; 33(10):105903. PubMed ID: 33260161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of finite-temperature and anharmonic lattice dynamics on the thermal conductivity of ZrS
    Pandit A; Hamad B
    J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34315140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of empirical interatomic potential to predict thermal conductivity in ThO
    Jin M; Khafizov M; Jiang C; Zhou S; Marianetti CA; Bryan MS; Manley ME; Hurley DH
    J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 33455948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferability of interatomic potentials for silicene.
    Maździarz M
    Beilstein J Nanotechnol; 2023; 14():574-585. PubMed ID: 37200833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general-purpose machine learning Pt interatomic potential for an accurate description of bulk, surfaces, and nanoparticles.
    Kloppenburg J; Pártay LB; Jónsson H; Caro MA
    J Chem Phys; 2023 Apr; 158(13):134704. PubMed ID: 37031153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning interatomic potential for silicon-nitride (Si3N4) by active learning.
    Milardovich D; Wilhelmer C; Waldhoer D; Cvitkovich L; Sivaraman G; Grasser T
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep neural network-based molecular dynamics simulations for AlxGa1-xN alloys and their thermal properties.
    Liu X; Wang D; Wang B; Wang Q; Sun J; Xiong Y
    J Phys Condens Matter; 2024 Sep; ():. PubMed ID: 39321835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anharmonic Vibrational States of Solids from DFT Calculations. Part I: Description of the Potential Energy Surface.
    Erba A; Maul J; Ferrabone M; Carbonnière P; Rérat M; Dovesi R
    J Chem Theory Comput; 2019 Jun; 15(6):3755-3765. PubMed ID: 31038943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correcting force error-induced underestimation of lattice thermal conductivity in machine learning molecular dynamics.
    Wu X; Zhou W; Dong H; Ying P; Wang Y; Song B; Fan Z; Xiong S
    J Chem Phys; 2024 Jul; 161(1):. PubMed ID: 38949595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Free Energy Barriers for Heterogeneous Catalytic Reactions with Machine Learning Potentials and Umbrella Integration.
    Stocker S; Jung H; Csányi G; Goldsmith CF; Reuter K; Margraf JT
    J Chem Theory Comput; 2023 Oct; 19(19):6796-6804. PubMed ID: 37747812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An accurate and transferable machine learning potential for carbon.
    Rowe P; Deringer VL; Gasparotto P; Csányi G; Michaelides A
    J Chem Phys; 2020 Jul; 153(3):034702. PubMed ID: 32716159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a simplified description of thermoelectric materials: accuracy of approximate density functional theory for phonon dispersions.
    Niehaus TA; Melissen STAG; Aradi B; Vaez Allaei SM
    J Phys Condens Matter; 2019 Oct; 31(39):395901. PubMed ID: 31261140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine-Learning Interatomic Potentials.
    Mortazavi B; Silani M; Podryabinkin EV; Rabczuk T; Zhuang X; Shapeev AV
    Adv Mater; 2021 Sep; 33(35):e2102807. PubMed ID: 34296779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing machine learning for efficient large-scale interatomic potential for sildenafil and pharmaceuticals containing H, C, N, O, and S.
    Nikidis E; Kyriakopoulos N; Tohid R; Kachrimanis K; Kioseoglou J
    Nanoscale; 2024 Oct; 16(38):18014-18026. PubMed ID: 39252581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal, mechanical, and electrical properties of Si-stacked nanosheet transistors using machine learning interatomic potentials.
    Saleh MA; Abdelhamid HM; Bayoumi AM
    Nanotechnology; 2024 Oct; ():. PubMed ID: 39366407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy, transferability, and computational efficiency of interatomic potentials for simulations of carbon under extreme conditions.
    Willman JT; Gonzalez JM; Nguyen-Cong K; Hamel S; Lordi V; Oleynik II
    J Chem Phys; 2024 Aug; 161(8):. PubMed ID: 39193946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance and Cost Assessment of Machine Learning Interatomic Potentials.
    Zuo Y; Chen C; Li X; Deng Z; Chen Y; Behler J; Csányi G; Shapeev AV; Thompson AP; Wood MA; Ong SP
    J Phys Chem A; 2020 Jan; 124(4):731-745. PubMed ID: 31916773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of molecular dynamics potentials used to account for thermal diffuse scattering in multislice simulations.
    Chen X; Kim DS; LeBeau JM
    Ultramicroscopy; 2023 Feb; 244():113644. PubMed ID: 36410085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.