BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37098889)

  • 1. Erg6 Acts as a Downstream Effector of the Transcription Factor Flo8 To Regulate Biofilm Formation in Candida albicans.
    Jin X; Luan X; Xie F; Chang W; Lou H
    Microbiol Spectr; 2023 Jun; 11(3):e0039323. PubMed ID: 37098889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.
    Cao F; Lane S; Raniga PP; Lu Y; Zhou Z; Ramon K; Chen J; Liu H
    Mol Biol Cell; 2006 Jan; 17(1):295-307. PubMed ID: 16267276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in the Flo8 transcription factor contribute to virulence and phenotypic traits in Candida albicans strains.
    Liu JY; Li WJ; Shi C; Wang Y; Zhao Y; Xiang MJ
    Microbiol Res; 2015 Sep; 178():1-8. PubMed ID: 26302841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transcription factor Cas5 suppresses hyphal morphogenesis during yeast-form growth in Candida albicans.
    Kim JM; Moon HY; Lee DW; Kang HA; Kim JY
    J Microbiol; 2021 Oct; 59(10):911-919. PubMed ID: 34491522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of filamentation in Galleria mellonella killing by Candida albicans.
    Fuchs BB; Eby J; Nobile CJ; El Khoury JB; Mitchell AP; Mylonakis E
    Microbes Infect; 2010 Jun; 12(6):488-96. PubMed ID: 20223293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of an allosteric inhibitor of fungal-specific C-24 sterol methyltransferase to treat Candida albicans infections.
    Jin X; Hou X; Wang X; Zhang M; Chen J; Song M; Zhang J; Zheng H; Chang W; Lou H
    Cell Chem Biol; 2023 May; 30(5):553-568.e7. PubMed ID: 37160123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FLO8 deletion leads to decreased adhesion and virulence with downregulated expression of EPA1, EPA6, and EPA7 in Candida glabrata.
    Zhao JT; Chen KZ; Liu JY; Li WH; Wang YZ; Wang LL; Xiang MJ
    Braz J Microbiol; 2022 Jun; 53(2):727-738. PubMed ID: 35122657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of Candida albicans Sfl1 in hyphal development.
    Li Y; Su C; Mao X; Cao F; Chen J
    Eukaryot Cell; 2007 Nov; 6(11):2112-21. PubMed ID: 17715361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis uncovers the modulation of ergosterol, sphingolipid and oxidative stress pathway by myristic acid impeding biofilm and virulence in Candida albicans.
    Prasath KG; Sethupathy S; Pandian SK
    J Proteomics; 2019 Sep; 208():103503. PubMed ID: 31454558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mss11, a transcriptional activator, is required for hyphal development in Candida albicans.
    Su C; Li Y; Lu Y; Chen J
    Eukaryot Cell; 2009 Nov; 8(11):1780-91. PubMed ID: 19734367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Candida albicans Cdk8-dependent phosphoproteome reveals repression of hyphal growth through a Flo8-dependent pathway.
    Hollomon JM; Liu Z; Rusin SF; Jenkins NP; Smith AK; Koeppen K; Kettenbach AN; Myers LC; Hogan DA
    PLoS Genet; 2022 Jan; 18(1):e1009622. PubMed ID: 34982775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repurposing Pilocarpine Hydrochloride for Treatment of Candida albicans Infections.
    Nile C; Falleni M; Cirasola D; Alghamdi A; Anderson OF; Delaney C; Ramage G; Ottaviano E; Tosi D; Bulfamante G; Morace G; Borghi E
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30674648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnesium deprivation affects cellular circuitry involved in drug resistance and virulence in Candida albicans.
    Hans S; Fatima Z; Hameed S
    J Glob Antimicrob Resist; 2019 Jun; 17():263-275. PubMed ID: 30659981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans.
    Sun L; Liao K; Wang D
    PLoS One; 2015; 10(2):e0117695. PubMed ID: 25710475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The GRF10 homeobox gene regulates filamentous growth in the human fungal pathogen Candida albicans.
    Ghosh AK; Wangsanut T; Fonzi WA; Rolfes RJ
    FEMS Yeast Res; 2015 Dec; 15(8):. PubMed ID: 26472755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional divergence of a global regulatory complex governing fungal filamentation.
    Polvi EJ; Veri AO; Liu Z; Hossain S; Hyde S; Kim SH; Tebbji F; Sellam A; Todd RT; Xie JL; Lin ZY; Wong CJ; Shapiro RS; Whiteway M; Robbins N; Gingras AC; Selmecki A; Cowen LE
    PLoS Genet; 2019 Jan; 15(1):e1007901. PubMed ID: 30615616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FLO8 deletion leads to azole resistance by upregulating CDR1 and CDR2 in Candida albicans.
    Li WJ; Liu JY; Shi C; Zhao Y; Meng LN; Wu F; Xiang MJ
    Res Microbiol; 2019; 170(6-7):272-279. PubMed ID: 31449848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of UME6, a key regulator of Candida albicans hyphal development, enhances biofilm formation via Hgc1- and Sun41-dependent mechanisms.
    Banerjee M; Uppuluri P; Zhao XR; Carlisle PL; Vipulanandan G; Villar CC; López-Ribot JL; Kadosh D
    Eukaryot Cell; 2013 Feb; 12(2):224-32. PubMed ID: 23223035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence.
    Du H; Guan G; Xie J; Sun Y; Tong Y; Zhang L; Huang G
    PLoS One; 2012; 7(1):e29707. PubMed ID: 22276126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of hyphal formation and virulence of
    Khan F; Bamunuarachchi NI; Tabassum N; Jo DM; Khan MM; Kim YM
    Biofouling; 2021 Jul; 37(6):626-655. PubMed ID: 34284656
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.