BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 37099103)

  • 1. Study on synergistic pyrolysis and kinetics of mixed plastics based on spent fluid-catalytic-cracking catalyst.
    Wang K; Bian H; Lai Q; Chen Y; Li Z; Hao Y; Yan L; Wang C; Tian X
    Environ Sci Pollut Res Int; 2023 May; 30(25):66665-66682. PubMed ID: 37099103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor.
    Zhang H; Xiao R; Nie J; Jin B; Shao S; Xiao G
    Bioresour Technol; 2015 Sep; 192():68-74. PubMed ID: 26011693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals.
    Saeaung K; Phusunti N; Phetwarotai W; Assabumrungrat S; Cheirsilp B
    Waste Manag; 2021 May; 127():101-111. PubMed ID: 33932851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalyst-mediated pyrolysis of waste plastics: tuning yield, composition, and nature of pyrolysis oil.
    Kanattukara BV; Singh G; Sarkar P; Chopra A; Singh D; Mondal S; Kapur GS; Ramakumar SSV
    Environ Sci Pollut Res Int; 2023 May; 30(24):64994-65010. PubMed ID: 37074603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor.
    Kremer I; Tomić T; Katančić Z; Erceg M; Papuga S; Vuković JP; Schneider DR
    J Environ Manage; 2021 Oct; 296():113145. PubMed ID: 34271358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of HDPE into Value Products by Fast Pyrolysis Using FCC Spent Catalysts in a Fountain Confined Conical Spouted Bed Reactor.
    Orozco S; Artetxe M; Lopez G; Suarez M; Bilbao J; Olazar M
    ChemSusChem; 2021 Oct; 14(19):4291-4300. PubMed ID: 34101378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs.
    Faisal F; Rasul MG; Jahirul MI; Schaller D
    Sci Total Environ; 2023 Feb; 861():160721. PubMed ID: 36496020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A "Wastes-Treat-Wastes" Technology: Role and Potential of Spent Fluid Catalytic Cracking Catalysts Assisted Pyrolysis of Discarded Car Tires.
    Zhao B; Wang C; Bian H
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the potential of clay catalysts in catalytic pyrolysis of mixed plastic waste for fuel and energy recovery.
    Cai W; Kumar R; Zheng Y; Zhu Z; Wong JWC; Zhao J
    Heliyon; 2023 Dec; 9(12):e23140. PubMed ID: 38076152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effects of CO
    Kwon D; Jung S; Lin KA; Tsang YF; Park YK; Kwon EE
    J Hazard Mater; 2021 Oct; 419():126537. PubMed ID: 34323732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the Mechanism and Experiment of Styrene Butadiene Rubber Reinforcement by Spent Fluid Catalytic Cracking Catalyst.
    Shan T; Bian H; Zhu D; Wang K; Wang C; Tian X
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor.
    Sivagami K; Kumar KV; Tamizhdurai P; Govindarajan D; Kumar M; Nambi I
    RSC Adv; 2022 Mar; 12(13):7612-7620. PubMed ID: 35424760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE).
    Santella C; Cafiero L; De Angelis D; La Marca F; Tuffi R; Vecchio Ciprioti S
    Waste Manag; 2016 Aug; 54():143-52. PubMed ID: 27184448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on Hazardous Waste Removal Management: Identification of the Hazardous Characteristics of Fluid Catalytic Cracking Spent Catalysts.
    Fu H; Chen Y; Liu T; Zhu X; Yang Y; Song H
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in liquid fuel production from plastic waste via pyrolysis: Emphasis on polyolefins and polystyrene.
    Valizadeh S; Valizadeh B; Seo MW; Choi YJ; Lee J; Chen WH; Lin KA; Park YK
    Environ Res; 2024 Apr; 246():118154. PubMed ID: 38218520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of an upgraded lignin-derived bio-oil using the clay catalysts of bentonite and olivine and the spent FCC in a bench-scale fixed bed pyrolyzer.
    Ro D; Shafaghat H; Jang SH; Lee HW; Jung SC; Jae J; Cha JS; Park YK
    Environ Res; 2019 May; 172():658-664. PubMed ID: 30878737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics.
    Zhang X; Lei H; Zhu L; Zhu X; Qian M; Yadavalli G; Wu J; Chen S
    Bioresour Technol; 2016 Nov; 220():233-238. PubMed ID: 27573477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW).
    Al-Salem SM; Antelava A; Constantinou A; Manos G; Dutta A
    J Environ Manage; 2017 Jul; 197():177-198. PubMed ID: 28384612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines.
    Budsaereechai S; Hunt AJ; Ngernyen Y
    RSC Adv; 2019 Feb; 9(10):5844-5857. PubMed ID: 35515940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.