These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 37099590)
1. Water level prediction using soft computing techniques: A case study in the Malwathu Oya, Sri Lanka. Rathnayake N; Rathnayake U; Dang TL; Hoshino Y PLoS One; 2023; 18(4):e0282847. PubMed ID: 37099590 [TBL] [Abstract][Full Text] [Related]
2. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction. Tabbussum R; Dar AQ Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033 [TBL] [Abstract][Full Text] [Related]
3. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States. Olyaie E; Banejad H; Chau KW; Melesse AM Environ Monit Assess; 2015 Apr; 187(4):189. PubMed ID: 25787167 [TBL] [Abstract][Full Text] [Related]
4. Modeling the effect of meteorological variables on streamflow estimation: application of data mining techniques in mixed rainfall-snowmelt regime Munzur River, Türkiye. Katipoğlu OM Environ Sci Pollut Res Int; 2023 Sep; 30(42):96312-96328. PubMed ID: 37572257 [TBL] [Abstract][Full Text] [Related]
5. Modeling daily water temperature for rivers: comparison between adaptive neuro-fuzzy inference systems and artificial neural networks models. Zhu S; Heddam S; Nyarko EK; Hadzima-Nyarko M; Piccolroaz S; Wu S Environ Sci Pollut Res Int; 2019 Jan; 26(1):402-420. PubMed ID: 30406582 [TBL] [Abstract][Full Text] [Related]
6. Prediction of evaporation from dam reservoirs under climate change using soft computing techniques. Kayhomayoon Z; Naghizadeh F; Malekpoor M; Arya Azar N; Ball J; Ghordoyee Milan S Environ Sci Pollut Res Int; 2023 Feb; 30(10):27912-27935. PubMed ID: 36385346 [TBL] [Abstract][Full Text] [Related]
7. Flood discharge prediction using improved ANFIS model combined with hybrid particle swarm optimisation and slime mould algorithm. Samantaray S; Sahoo P; Sahoo A; Satapathy DP Environ Sci Pollut Res Int; 2023 Jul; 30(35):83845-83872. PubMed ID: 37351742 [TBL] [Abstract][Full Text] [Related]
8. An improved adaptive neuro fuzzy inference system model using conjoined metaheuristic algorithms for electrical conductivity prediction. Ahmadianfar I; Shirvani-Hosseini S; He J; Samadi-Koucheksaraee A; Yaseen ZM Sci Rep; 2022 Mar; 12(1):4934. PubMed ID: 35322087 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel. Wong YJ; Arumugasamy SK; Chung CH; Selvarajoo A; Sethu V Environ Monit Assess; 2020 Jun; 192(7):439. PubMed ID: 32556670 [TBL] [Abstract][Full Text] [Related]
10. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models. Seifi A; Riahi-Madvar H Environ Sci Pollut Res Int; 2019 Jan; 26(1):867-885. PubMed ID: 30415370 [TBL] [Abstract][Full Text] [Related]
11. Computational assessment of groundwater salinity distribution within coastal multi-aquifers of Bangladesh. Jamei M; Karbasi M; Malik A; Abualigah L; Islam ARMT; Yaseen ZM Sci Rep; 2022 Jul; 12(1):11165. PubMed ID: 35778436 [TBL] [Abstract][Full Text] [Related]
12. River suspended sediment modelling using the CART model: A comparative study of machine learning techniques. Choubin B; Darabi H; Rahmati O; Sajedi-Hosseini F; Kløve B Sci Total Environ; 2018 Feb; 615():272-281. PubMed ID: 28982076 [TBL] [Abstract][Full Text] [Related]
13. Application of artificial intelligence models for prediction of groundwater level fluctuations: case study (Tehran-Karaj alluvial aquifer). Vadiati M; Rajabi Yami Z; Eskandari E; Nakhaei M; Kisi O Environ Monit Assess; 2022 Jul; 194(9):619. PubMed ID: 35904687 [TBL] [Abstract][Full Text] [Related]
14. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Wang Y; Hong H; Chen W; Li S; Panahi M; Khosravi K; Shirzadi A; Shahabi H; Panahi S; Costache R J Environ Manage; 2019 Oct; 247():712-729. PubMed ID: 31279803 [TBL] [Abstract][Full Text] [Related]
15. Prediction of biochemical oxygen demand at the upstream catchment of a reservoir using adaptive neuro fuzzy inference system. Chiu YC; Chiang CW; Lee TY Water Sci Technol; 2017 Oct; 76(7-8):1739-1753. PubMed ID: 28991790 [TBL] [Abstract][Full Text] [Related]
16. Land use impacts on river health of Uma Oya, Sri Lanka: implications of spatial scales. Jayawardana JM; Gunawardana WD; Udayakumara EP; Westbrooke M Environ Monit Assess; 2017 Apr; 189(4):192. PubMed ID: 28357718 [TBL] [Abstract][Full Text] [Related]
17. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study. Heddam S Environ Monit Assess; 2014 Jan; 186(1):597-619. PubMed ID: 24057665 [TBL] [Abstract][Full Text] [Related]
18. Comparison of different heuristic and decomposition techniques for river stage modeling. Seo Y; Kim S; Singh VP Environ Monit Assess; 2018 Jun; 190(7):392. PubMed ID: 29892912 [TBL] [Abstract][Full Text] [Related]
19. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions. Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854 [TBL] [Abstract][Full Text] [Related]
20. Estimation of daily dissolved oxygen concentration for river water quality using conventional regression analysis, multivariate adaptive regression splines, and TreeNet techniques. Nacar S; Mete B; Bayram A Environ Monit Assess; 2020 Nov; 192(12):752. PubMed ID: 33159587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]