These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37099746)

  • 1. A Survey of U.S. Audiologists' Usage of and Attitudes Toward Otoacoustic Emissions.
    Mertes IB; Marquess A
    Am J Audiol; 2023 Jun; 32(2):417-431. PubMed ID: 37099746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex differences in distortion-product and transient-evoked otoacoustic emissions compared.
    McFadden D; Martin GK; Stagner BB; Maloney MM
    J Acoust Soc Am; 2009 Jan; 125(1):239-46. PubMed ID: 19173411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of transiently evoked and distortion-product otoacoustic emissions in humans.
    Probst R; Harris FP
    Prog Brain Res; 1993; 97():91-9. PubMed ID: 8234771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evoked otoacoustic emissions: an alternative test of auditory function in horses.
    Mc Brearty A; Auckburally A; Pollock PJ; Penderis J
    Equine Vet J; 2013 Jan; 45(1):60-5. PubMed ID: 22296459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of transient evoked otoacoustic emissions in the neonatal rat.
    Khvoles R; Freeman S; Sohmer H
    Audiol Neurootol; 1998; 3(1):40-53. PubMed ID: 9502540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Otoacoustic emissions in the prediction of sudden sensorineural hearing loss outcome.
    Shupak A; Zeidan R; Shemesh R
    Otol Neurotol; 2014 Dec; 35(10):1691-7. PubMed ID: 25321887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient-evoked and 2F1-F2 distortion product oto-acoustic emissions in dogs: preliminary findings.
    Sockalingam R; Filippich L; Sommerlad S; Murdoch B; Charles B
    Audiol Neurootol; 1998; 3(6):373-85. PubMed ID: 9732131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of atmospheric pressure variation on spontaneous, transiently evoked, and distortion product otoacoustic emissions in normal human ears.
    Hauser R; Probst R; Harris FP
    Hear Res; 1993 Sep; 69(1-2):133-45. PubMed ID: 8226333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term stability between click-evoked otoacoustic emissions and distortion product otoacoustic emissions in guinea pigs: A comparison.
    Hoshino M; Ueda H; Nakata S
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(4):175-80. PubMed ID: 10450050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-invasive measurement of intracranial pressure changes by otoacoustic emissions (OAEs)--a report of preliminary data.
    Frank AM; Alexiou C; Hulin P; Janssen T; Arnold W; Trappe AE
    Zentralbl Neurochir; 2000; 61(4):177-80. PubMed ID: 11392287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of transient evoked and distortion product otoacoustic emissions to the direct effects of noise on the human cochlea.
    Vinck BM; Van Cauwenberge PB; Leroy L; Corthals P
    Audiology; 1999; 38(1):44-52. PubMed ID: 10052835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distortion-product otoacoustic emissions and selective sensorineural loss in IDDM.
    Di Nardo W; Ghirlanda G; Paludetti G; Cercone S; Saponara C; Del Ninno M; Di Girolamo S; Magnani P; Di Leo MA
    Diabetes Care; 1998 Aug; 21(8):1317-21. PubMed ID: 9702440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Otoacoustic Emissions in Smoking and Nonsmoking Young Adults.
    Jedrzejczak WW; Koziel M; Kochanek K; Skarzynski H
    Clin Exp Otorhinolaryngol; 2015 Dec; 8(4):303-11. PubMed ID: 26622946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of cochlear active mechanisms in tinnitus subjects with normal hearing sensitivity: multiparametric recording of evoked otoacoustic emissions and contralateral suppression.
    Paglialonga A; Del Bo L; Ravazzani P; Tognola G
    Auris Nasus Larynx; 2010 Jun; 37(3):291-8. PubMed ID: 19879078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of transient-evoked and distortion product otoacoustic emissions in normal-hearing and hearing-impaired subjects.
    Gorga MP; Neely ST; Bergman BM; Beauchaine KL; Kaminski JR; Peters J; Schulte L; Jesteadt W
    J Acoust Soc Am; 1993 Nov; 94(5):2639-48. PubMed ID: 8270740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immittance and otoacoustic emissions in rhesus monkeys and humans.
    Lasky RE; Beach KE; Laughlin NK
    Audiology; 2000; 39(2):61-9. PubMed ID: 10882044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distortion product otoacoustic emissions and tympanometric measurements in an adult population-based study.
    Uchida Y; Ando F; Nakata S; Ueda H; Nakashima T; Niino N; Shimokata H
    Auris Nasus Larynx; 2006 Dec; 33(4):397-401. PubMed ID: 16753276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint Profile Characteristics of Long-Latency Transient Evoked and Distortion Otoacoustic Emissions.
    Pacheco D; Rajagopal N; Prieve BA; Nangia S
    Am J Audiol; 2022 Sep; 31(3):684-697. PubMed ID: 35862753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects.
    Moulin A; Collet L; Veuillet E; Morgon A
    Hear Res; 1993 Feb; 65(1-2):216-33. PubMed ID: 8458753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.