BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 37099832)

  • 1. Genome folding dynamics during the M-to-G1-phase transition.
    Zhang H; Blobel GA
    Curr Opin Genet Dev; 2023 Jun; 80():102036. PubMed ID: 37099832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
    Wutz G; Várnai C; Nagasaka K; Cisneros DA; Stocsits RR; Tang W; Schoenfelder S; Jessberger G; Muhar M; Hossain MJ; Walther N; Koch B; Kueblbeck M; Ellenberg J; Zuber J; Fraser P; Peters JM
    EMBO J; 2017 Dec; 36(24):3573-3599. PubMed ID: 29217591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute quantification of cohesin, CTCF and their regulators in human cells.
    Holzmann J; Politi AZ; Nagasaka K; Hantsche-Grininger M; Walther N; Koch B; Fuchs J; Dürnberger G; Tang W; Ladurner R; Stocsits RR; Busslinger GA; Novák B; Mechtler K; Davidson IF; Ellenberg J; Peters JM
    Elife; 2019 Jun; 8():. PubMed ID: 31204999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Architectural proteins for the formation and maintenance of the 3D genome.
    Li M; Gan J; Sun Y; Xu Z; Yang J; Sun Y; Li C
    Sci China Life Sci; 2020 Jun; 63(6):795-810. PubMed ID: 32249389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin structure dynamics during the mitosis-to-G1 phase transition.
    Zhang H; Emerson DJ; Gilgenast TG; Titus KR; Lan Y; Huang P; Zhang D; Wang H; Keller CA; Giardine B; Hardison RC; Phillips-Cremins JE; Blobel GA
    Nature; 2019 Dec; 576(7785):158-162. PubMed ID: 31776509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tour of 3D genome with a focus on CTCF.
    Wang DC; Wang W; Zhang L; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CTCF and transcription influence chromatin structure re-configuration after mitosis.
    Zhang H; Lam J; Zhang D; Lan Y; Vermunt MW; Keller CA; Giardine B; Hardison RC; Blobel GA
    Nat Commun; 2021 Aug; 12(1):5157. PubMed ID: 34453048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF.
    Aljahani A; Hua P; Karpinska MA; Quililan K; Davies JOJ; Oudelaar AM
    Nat Commun; 2022 Apr; 13(1):2139. PubMed ID: 35440598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation.
    Kang H; Shokhirev MN; Xu Z; Chandran S; Dixon JR; Hetzer MW
    Genes Dev; 2020 Jul; 34(13-14):913-930. PubMed ID: 32499403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loop stacking organizes genome folding from TADs to chromosomes.
    Hafner A; Park M; Berger SE; Murphy SE; Nora EP; Boettiger AN
    Mol Cell; 2023 May; 83(9):1377-1392.e6. PubMed ID: 37146570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposing Effects of Cohesin and Transcription on CTCF Organization Revealed by Super-resolution Imaging.
    Gu B; Comerci CJ; McCarthy DG; Saurabh S; Moerner WE; Wysocka J
    Mol Cell; 2020 Nov; 80(4):699-711.e7. PubMed ID: 33091336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamic role of cohesin in maintaining human genome architecture.
    Agarwal A; Korsak S; Choudhury A; Plewczynski D
    Bioessays; 2023 Oct; 45(10):e2200240. PubMed ID: 37603403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver.
    Matthews BJ; Waxman DJ
    Elife; 2018 May; 7():. PubMed ID: 29757144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders.
    Uusküla-Reimand L; Hou H; Samavarchi-Tehrani P; Rudan MV; Liang M; Medina-Rivera A; Mohammed H; Schmidt D; Schwalie P; Young EJ; Reimand J; Hadjur S; Gingras AC; Wilson MD
    Genome Biol; 2016 Aug; 17(1):182. PubMed ID: 27582050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of Dosage Deficiencies in CTCF and Cohesin on Genome Organization, Gene Expression, and Human Neurodevelopment.
    Cummings CT; Rowley MJ
    Genes (Basel); 2022 Mar; 13(4):. PubMed ID: 35456389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Interplay of Transcription and Genome Topology Programs T Cell Development and Differentiation.
    Zhao X; Zhu S; Peng W; Xue HH
    J Immunol; 2022 Dec; 209(12):2269-2278. PubMed ID: 36469845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis of CTCF binding polarity in genome folding.
    Nora EP; Caccianini L; Fudenberg G; So K; Kameswaran V; Nagle A; Uebersohn A; Hajj B; Saux AL; Coulon A; Mirny LA; Pollard KS; Dahan M; Bruneau BG
    Nat Commun; 2020 Nov; 11(1):5612. PubMed ID: 33154377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cohesin-mediated interactions organize chromosomal domain architecture.
    Sofueva S; Yaffe E; Chan WC; Georgopoulou D; Vietri Rudan M; Mira-Bontenbal H; Pollard SM; Schroth GP; Tanay A; Hadjur S
    EMBO J; 2013 Dec; 32(24):3119-29. PubMed ID: 24185899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of 3D genome organization, guided by cohesin and CTCF looping, on sex-biased chromatin interactions and gene expression in mouse liver.
    Matthews BJ; Waxman DJ
    Epigenetics Chromatin; 2020 Jul; 13(1):30. PubMed ID: 32680543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A subset of topologically associating domains fold into mesoscale core-periphery networks.
    Huang H; Chen ST; Titus KR; Emerson DJ; Bassett DS; Phillips-Cremins JE
    Sci Rep; 2019 Jul; 9(1):9526. PubMed ID: 31266973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.