BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37099876)

  • 1. Brain activity during the preparation and production of spontaneous speech in children with persistent stuttering.
    Chow HM; Garnett EO; Ratner NB; Chang SE
    Neuroimage Clin; 2023; 38():103413. PubMed ID: 37099876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. White matter microstructural differences underlying beta oscillations during speech in adults who stutter.
    Mollaei F; Mersov A; Woodbury M; Jobst C; Cheyne D; De Nil L
    Brain Lang; 2021 Apr; 215():104921. PubMed ID: 33550120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of trait and state in stuttering.
    Connally EL; Ward D; Pliatsikas C; Finnegan S; Jenkinson M; Boyles R; Watkins KE
    Hum Brain Mapp; 2018 Aug; 39(8):3109-3126. PubMed ID: 29624772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous morphology in left hemisphere motor and premotor cortex of children who stutter.
    Garnett EO; Chow HM; Nieto-Castañón A; Tourville JA; Guenther FH; Chang SE
    Brain; 2018 Sep; 141(9):2670-2684. PubMed ID: 30084910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural network connectivity differences in children who stutter.
    Chang SE; Zhu DC
    Brain; 2013 Dec; 136(Pt 12):3709-26. PubMed ID: 24131593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses.
    Neef NE; Bütfering C; Anwander A; Friederici AD; Paulus W; Sommer M
    Neuroimage; 2016 Nov; 142():628-644. PubMed ID: 27542724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When will a stuttering moment occur? The determining role of speech motor preparation.
    Vanhoutte S; Cosyns M; van Mierlo P; Batens K; Corthals P; De Letter M; Van Borsel J; Santens P
    Neuropsychologia; 2016 Jun; 86():93-102. PubMed ID: 27106391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered functional connectivity in persistent developmental stuttering.
    Yang Y; Jia F; Siok WT; Tan LH
    Sci Rep; 2016 Jan; 6():19128. PubMed ID: 26743821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Event-related fMRI for the suppression of speech-associated artifacts in stuttering.
    Preibisch C; Raab P; Neumann K; Euler HA; von Gudenberg AW; Gall V; Lanfermann H; Zanella F
    Neuroimage; 2003 Jul; 19(3):1076-84. PubMed ID: 12880833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neurological underpinnings of cluttering: Some initial findings.
    Ward D; Connally EL; Pliatsikas C; Bretherton-Furness J; Watkins KE
    J Fluency Disord; 2015 Mar; 43():1-16. PubMed ID: 25662409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speech planning and execution in children who stutter: Preliminary findings from a fNIRS investigation.
    Jackson ES; Wijeakumar S; Beal DS; Brown B; Zebrowski PM; Spencer JP
    J Clin Neurosci; 2021 Sep; 91():32-42. PubMed ID: 34373047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional abnormalities of the motor system in developmental stuttering.
    Watkins KE; Smith SM; Davis S; Howell P
    Brain; 2008 Jan; 131(Pt 1):50-9. PubMed ID: 17928317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single word reading in developmental stutterers and fluent speakers.
    Salmelin R; Schnitzler A; Schmitz F; Freund HJ
    Brain; 2000 Jun; 123 ( Pt 6)():1184-202. PubMed ID: 10825357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. White matter tractography of the neural network for speech-motor control in children who stutter.
    Misaghi E; Zhang Z; Gracco VL; De Nil LF; Beal DS
    Neurosci Lett; 2018 Mar; 668():37-42. PubMed ID: 29309858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Language and motor abilities of preschool children who stutter: evidence from behavioral and kinematic indices of nonword repetition performance.
    Smith A; Goffman L; Sasisekaran J; Weber-Fox C
    J Fluency Disord; 2012 Dec; 37(4):344-58. PubMed ID: 23218217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain developmental trajectories associated with childhood stuttering persistence and recovery.
    Chow HM; Garnett EO; Koenraads SPC; Chang SE
    Dev Cogn Neurosci; 2023 Apr; 60():101224. PubMed ID: 36863188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain activation abnormalities during speech and non-speech in stuttering speakers.
    Chang SE; Kenney MK; Loucks TM; Ludlow CL
    Neuroimage; 2009 May; 46(1):201-12. PubMed ID: 19401143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain correlates of stuttering and syllable production. A PET performance-correlation analysis.
    Fox PT; Ingham RJ; Ingham JC; Zamarripa F; Xiong JH; Lancaster JL
    Brain; 2000 Oct; 123 ( Pt 10)():1985-2004. PubMed ID: 11004117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory rhythm discrimination in adults who stutter: An fMRI study.
    Garnett EO; McAuley JD; Wieland EA; Chow HM; Zhu DC; Dilley LC; Chang SE
    Brain Lang; 2023 Jan; 236():105219. PubMed ID: 36577315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. White matter pathways in persistent developmental stuttering: Lessons from tractography.
    Kronfeld-Duenias V; Civier O; Amir O; Ezrati-Vinacour R; Ben-Shachar M
    J Fluency Disord; 2018 Mar; 55():68-83. PubMed ID: 29050641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.