These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37099918)

  • 21. Realistic finite element-based stent design: the impact of balloon folding.
    De Beule M; Mortier P; Carlier SG; Verhegghe B; Van Impe R; Verdonck P
    J Biomech; 2008; 41(2):383-9. PubMed ID: 17920068
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling of stents exhibiting negative Poisson's ratio effect.
    Raamachandran J; Jayavenkateshwaran K
    Comput Methods Biomech Biomed Engin; 2007 Aug; 10(4):245-55. PubMed ID: 17671858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Finite element simulation of stent implantation and its applications in the interventional planning for hemorrhagic cardio-cerebrovascular diseases].
    Wang S; Cai Y; Meng Z; Zhang X; Yang X; Dong Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Dec; 37(6):974-982. PubMed ID: 33369336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design method of self-expanding stents suitable for the patient's condition.
    Yoshino D; Inoue K
    Proc Inst Mech Eng H; 2010; 224(9):1019-38. PubMed ID: 21053768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Models of stents - comparison and applications.
    Záhora J; Bezrouk A; Hanus J
    Physiol Res; 2007; 56 Suppl 1():S115-S121. PubMed ID: 17552887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental and Numerical Simulation of Biodegradable Stents with Different Strut Geometries.
    Chen C; Xiong Y; Jiang W; Wang Y; Wang Z; Chen Y
    Cardiovasc Eng Technol; 2020 Feb; 11(1):36-46. PubMed ID: 31664685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Comparative study on the mechanical properties of lower limb arterial stents under various deformation modes].
    Wang T; Feng H; Wang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):303-309. PubMed ID: 33913290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mixed-braided stent: An effective way to improve comprehensive mechanical properties of poly (L-lactic acid) self-expandable braided stent.
    Liu M; Tian Y; Cheng J; Zhang Y; Zhao G; Ni Z
    J Mech Behav Biomed Mater; 2022 Apr; 128():105123. PubMed ID: 35183885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening.
    LaDisa JF; Olson LE; Hettrick DA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2005 Oct; 4():59. PubMed ID: 16250918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomaterial optimization in a percutaneous aortic valve stent using finite element analysis.
    Kumar GV; Mathew L
    Cardiovasc Revasc Med; 2009; 10(4):247-51. PubMed ID: 19815172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-Objective Optimization Design of Balloon-Expandable Coronary Stent.
    Shen X; Zhu H; Jiang J; Deng Y; Ji S
    Cardiovasc Eng Technol; 2019 Mar; 10(1):10-21. PubMed ID: 30673977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulated Bench Testing to Evaluate the Mechanical Performance of New Carotid Stents.
    Kumar GP; Kabinejadian F; Liu J; Ho P; Leo HL; Cui F
    Artif Organs; 2017 Mar; 41(3):267-272. PubMed ID: 27357068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deformation mechanics of self-expanding venous stents: Modelling and experiments.
    Hejazi M; Sassani F; Gagnon J; Hsiang Y; Phani AS
    J Biomech; 2021 May; 120():110333. PubMed ID: 33730560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Finite element analysis of the expansion behavior of coronary stents].
    Wang W; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1258-62, 1266. PubMed ID: 17228721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of Mechanical Properties and Testing of Nitinol Stents in Cerebral Aneurysm Simulation Models.
    Nam HG; Yoo CM; Baek SM; Kim HK; Shin JH; Hwang MH; Jo GE; Kim KS; Cho JH; Lee SH; Kim HC; Lim CH; Choi H; Sun K
    Artif Organs; 2015 Dec; 39(12):E213-26. PubMed ID: 26416549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical design of an intracranial stent for treating cerebral aneurysms.
    Shobayashi Y; Tanoue T; Tateshima S; Tanishita K
    Med Eng Phys; 2010 Nov; 32(9):1015-24. PubMed ID: 20675176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential of modeling and simulations of bioengineered devices: Endoprostheses, prostheses and orthoses.
    Ginestra PS; Ceretti E; Fiorentino A
    Proc Inst Mech Eng H; 2016 Jul; 230(7):607-38. PubMed ID: 27095509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of a mechanobiological simulation technique to stents used clinically.
    Boyle CJ; Lennon AB; Prendergast PJ
    J Biomech; 2013 Mar; 46(5):918-24. PubMed ID: 23398970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An in silico biomechanical analysis of the stent-esophagus interaction.
    Peirlinck M; Debusschere N; Iannaccone F; Siersema PD; Verhegghe B; Segers P; De Beule M
    Biomech Model Mechanobiol; 2018 Feb; 17(1):111-131. PubMed ID: 28819758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Braided bioresorbable cardiovascular stents mechanically reinforced by axial runners.
    Zhao F; Xue W; Wang F; Sun J; Lin J; Liu L; Sun K; Wang L
    J Mech Behav Biomed Mater; 2019 Jan; 89():19-32. PubMed ID: 30236978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.