BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37099953)

  • 1. Improved tenderness and water retention of pork pieces and its underlying molecular mechanism through the combination of low-temperature preheating and traditional cooking.
    Yao Y; Wang X; Cui H; Hayat K; Zhang X; Ho CT
    Food Chem; 2023 Sep; 421():136137. PubMed ID: 37099953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in actomyosin dissociation and endogenous enzyme activities during heating and their relationship with duck meat tenderness.
    Wang D; Dong H; Zhang M; Liu F; Bian H; Zhu Y; Xu W
    Food Chem; 2013 Nov; 141(2):675-9. PubMed ID: 23790834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low temperature cooking of pork meat - Physicochemical and sensory aspects.
    Becker A; Boulaaba A; Pingen S; Krischek C; Klein G
    Meat Sci; 2016 Aug; 118():82-8. PubMed ID: 27060409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effects of aging and low temperature, long time heating on pork toughness.
    Li S; Ma R; Pan J; Lin X; Dong X; Yu C
    Meat Sci; 2019 Apr; 150():33-39. PubMed ID: 30562641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of lean meat tenderness stimulated by coordinated variation of water status, protein structure and tissue histology during cooking of braised pork.
    Wang X; Yao Y; Yu J; Cui H; Hayat K; Zhang X; Ho CT
    Food Res Int; 2023 Sep; 171():113081. PubMed ID: 37330836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism underlying the tenderness evolution of stir-fried pork slices with heating rate revealed by infrared thermal imaging assistance.
    Xu Y; Wei W; Lin H; Huang F; Yang P; Liu J; Zhao L; Zhang C
    Meat Sci; 2024 Jul; 213():109478. PubMed ID: 38460233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ultrasound-assisted cooking on the physicochemical properties and microstructure of pork meatballs.
    Zhao X; Sun X; Lai B; Liu R; Wu M; Ge Q; Yu H
    Meat Sci; 2024 Feb; 208():109382. PubMed ID: 37952271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of LTLT heat treatment on cathepsin B and L activities and denaturation of myofibrillar proteins of pork.
    Dominguez-Hernandez E; Ertbjerg P
    Meat Sci; 2021 May; 175():108454. PubMed ID: 33548841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of cooking on vitamin D
    Neill HR; Gill CIR; McDonald EJ; McRoberts WC; Loy R; Pourshahidi LK
    Food Chem; 2022 Dec; 397():133839. PubMed ID: 35947937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of adenosine 5'-monophosphate (AMP) on tenderness, microstructure and chemical-physical index of duck breast meat.
    Wang D; Deng S; Zhang M; Geng Z; Sun C; Bian H; Xu W; Zhu Y; Liu F; Wu H
    J Sci Food Agric; 2016 Mar; 96(5):1467-73. PubMed ID: 25953510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application and optimization of the tenderization of pig Longissimus dorsi muscle by adenosine 5'-monophosphate (AMP) using the response surface methodology.
    Deng S; Wang D; Zhang M; Geng Z; Sun C; Bian H; Xu W; Zhu Y; Liu F; Wu H
    Anim Sci J; 2016 Mar; 87(3):439-48. PubMed ID: 26212625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelation of a combination of insect and pork proteins as affected by heating temperature and insect:meat ratio.
    Scholliers J; Steen L; Fraeye I
    Food Res Int; 2020 Nov; 137():109703. PubMed ID: 33233277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sous vide cooking and ageing on tenderness and water-holding capacity of low-value beef muscles from young and older animals.
    Naqvi ZB; Thomson PC; Ha M; Campbell MA; McGill DM; Friend MA; Warner RD
    Meat Sci; 2021 May; 175():108435. PubMed ID: 33461157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration of Umami Compounds in Pork Meat and Cooking Juice with Different Cooking Times and Temperatures.
    Rotola-Pukkila MK; Pihlajaviita ST; Kaimainen MT; Hopia AI
    J Food Sci; 2015 Dec; 80(12):C2711-6. PubMed ID: 26524113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The retention and recovery of amino acids from pork longissimus muscle following cooking to either 60°C or 75°C.
    Wilkinson BH; Lee E; Purchas RW; Morel PC
    Meat Sci; 2014 Jan; 96(1):361-5. PubMed ID: 23954276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of muscle, cooking method and final internal temperature on quality parameters of beef roast.
    Modzelewska-Kapituła M; Dąbrowska E; Jankowska B; Kwiatkowska A; Cierach M
    Meat Sci; 2012 Jun; 91(2):195-202. PubMed ID: 22336137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of quality classification, aging period, blade tenderization, and endpoint cooking temperature on cooking characteristics and tenderness of beef gluteus medius steaks.
    George-Evins CD; Unruh JA; Waylan AT; Marsden JL
    J Anim Sci; 2004 Jun; 82(6):1863-7. PubMed ID: 15217015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective effects of dietary carnosine during in-vitro digestion of pork differing in fat content and cooking conditions.
    Li YY; Yaylayan V; Palin MF; Sullivan B; Fortin F; Cliche S; Sabik H; Gariépy C
    J Food Biochem; 2021 Feb; 45(2):e13624. PubMed ID: 33615508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of different cooking regimes on the microstructure and tenderness of duck breast muscle.
    Li C; Wang D; Dong H; Xu W; Gao F; Zhou G; Zhang M
    J Sci Food Agric; 2013 Jun; 93(8):1979-85. PubMed ID: 23239107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water status evolution of pork blocks at different cooking procedures: A two-dimensional LF-NMR T
    Song Y; Huang F; Li X; Han D; Zhao L; Liang H; Rui M; Wang J; Zhang C
    Food Res Int; 2021 Oct; 148():110614. PubMed ID: 34507758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.