BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37099998)

  • 1. Visual and cognitive demands of manual and voice-based driving mode implementations on smartphones.
    Monk C; Sall R; Lester BD; Stephen Higgins J
    Accid Anal Prev; 2023 Jul; 187():107033. PubMed ID: 37099998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-modal assessment of on-road demand of voice and manual phone calling and voice navigation entry across two embedded vehicle systems.
    Mehler B; Kidd D; Reimer B; Reagan I; Dobres J; McCartt A
    Ergonomics; 2016 Mar; 59(3):344-67. PubMed ID: 26269281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of speech-based assistants on the driver's cognitive distraction.
    Loew A; Koniakowsky I; Forster Y; Naujoks F; Keinath A
    Accid Anal Prev; 2023 Jan; 179():106898. PubMed ID: 36401974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Driving behaviour while self-regulating mobile phone interactions: A human-machine system approach.
    Oviedo-Trespalacios O; Haque MM; King M; Demmel S
    Accid Anal Prev; 2018 Sep; 118():253-262. PubMed ID: 29653674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smartwatches are more distracting than mobile phones while driving: Results from an experimental study.
    Brodeur M; Ruer P; Léger PM; Sénécal S
    Accid Anal Prev; 2021 Jan; 149():105846. PubMed ID: 33181456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voice messaging while driving: Effects on driving performance and attention.
    Monzer D; Abou Ali A; Abou-Zeid M; Moacdieh NM
    Appl Ergon; 2022 May; 101():103692. PubMed ID: 35065427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driver distraction and in-vehicle interventions: A driving simulator study on visual attention and driving performance.
    Ezzati Amini R; Al Haddad C; Batabyal D; Gkena I; De Vos B; Cuenen A; Brijs T; Antoniou C
    Accid Anal Prev; 2023 Oct; 191():107195. PubMed ID: 37441985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-modal demands of a smartphone used to place calls and enter addresses during highway driving relative to two embedded systems.
    Reimer B; Mehler B; Reagan I; Kidd D; Dobres J
    Ergonomics; 2016 Dec; 59(12):1565-1585. PubMed ID: 27110964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The risk of a safety-critical event associated with mobile device use in specific driving contexts.
    Fitch GM; Hanowski RJ; Guo F
    Traffic Inj Prev; 2015; 16(2):124-32. PubMed ID: 24896192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the visual-manual resources required to perform calling and navigation tasks in conventional mode with a portable phone and in full- touch mode with an embedded system.
    Fu R; Zhao X; Li Z; Zhao C; Wang C
    Ergonomics; 2023 Oct; 66(10):1633-1651. PubMed ID: 36533714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A meta-analysis of in-vehicle and nomadic voice-recognition system interaction and driving performance.
    Simmons SM; Caird JK; Steel P
    Accid Anal Prev; 2017 Sep; 106():31-43. PubMed ID: 28554063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns in transitions of visual attention during baseline driving and during interaction with visual-manual and voice-based interfaces.
    Reimer B; Mehler B; Muñoz M; Dobres J; Kidd D; Reagan IJ
    Ergonomics; 2021 Nov; 64(11):1429-1451. PubMed ID: 34018916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driver distraction by smartphone use (WhatsApp) in different age groups.
    Ortiz C; Ortiz-Peregrina S; Castro JJ; Casares-López M; Salas C
    Accid Anal Prev; 2018 Aug; 117():239-249. PubMed ID: 29723735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying cognitive distraction using steering wheel reversal rates.
    Kountouriotis GK; Spyridakos P; Carsten OMJ; Merat N
    Accid Anal Prev; 2016 Nov; 96():39-45. PubMed ID: 27497055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distractions by work-related activities: The impact of ride-hailing app and radio system on male taxi drivers.
    Chen T; Oviedo-Trespalacios O; Sze NN; Chen S
    Accid Anal Prev; 2022 Dec; 178():106849. PubMed ID: 36209681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the demands of destination entry using Google Glass and the Samsung Galaxy S4 during simulated driving.
    Beckers N; Schreiner S; Bertrand P; Mehler B; Reimer B
    Appl Ergon; 2017 Jan; 58():25-34. PubMed ID: 27633195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of voice technology on test track driving performance: implications for driver distraction.
    Ranney TA; Harbluk JL; Noy YI
    Hum Factors; 2005; 47(2):439-54. PubMed ID: 16170949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers.
    Oviedo-Trespalacios O; Haque MM; King M; Washington S
    Accid Anal Prev; 2017 Apr; 101():67-77. PubMed ID: 28189943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Sound to Reduce Visual Distraction from In-vehicle Human-Machine Interfaces.
    Larsson P; Niemand M
    Traffic Inj Prev; 2015; 16 Suppl 1():S25-30. PubMed ID: 26027972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of distraction on younger drivers: A neurophysiological perspective.
    Goldsworthy J; Watling CN; Rose C; Larue G
    Appl Ergon; 2024 Jan; 114():104147. PubMed ID: 37832340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.