These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37100024)

  • 21. Mixture-of-Experts Variational Autoencoder for clustering and generating from similarity-based representations on single cell data.
    Kopf A; Fortuin V; Somnath VR; Claassen M
    PLoS Comput Biol; 2021 Jun; 17(6):e1009086. PubMed ID: 34191792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Representation Learning for the Clustering of Multi-Omics Data.
    Viaud G; Mayilvahanan P; Cournede PH
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):135-145. PubMed ID: 33600320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cancer subtyping with heterogeneous multi-omics data via hierarchical multi-kernel learning.
    Wei Y; Li L; Zhao X; Yang H; Sa J; Cao H; Cui Y
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36433785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Machine-Learning Tool Concurrently Models Single Omics and Phenome Data for Functional Subtyping and Personalized Cancer Medicine.
    Nyamundanda G; Eason K; Guinney J; Lord CJ; Sadanandam A
    Cancers (Basel); 2020 Sep; 12(10):. PubMed ID: 33007815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 2D-EM clustering approach for high-dimensional data through folding feature vectors.
    Sharma A; Kamola PJ; Tsunoda T
    BMC Bioinformatics; 2017 Dec; 18(Suppl 16):547. PubMed ID: 29297298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep structure integrative representation of multi-omics data for cancer subtyping.
    Yang B; Yang Y; Su X
    Bioinformatics; 2022 Jun; 38(13):3337-3342. PubMed ID: 35639657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Integrated Method Based on Wasserstein Distance and Graph for Cancer Subtype Discovery.
    Cao Q; Zhao J; Wang H; Guan Q; Zheng C
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3499-3510. PubMed ID: 37527304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel cancer subtyping method based on patient-specific gene regulatory network.
    Nakazawa MA; Tamada Y; Tanaka Y; Ikeguchi M; Higashihara K; Okuno Y
    Sci Rep; 2021 Dec; 11(1):23653. PubMed ID: 34880275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissecting cancer heterogeneity based on dimension reduction of transcriptomic profiles using extreme learning machines.
    Wang K; Duan X; Gao F; Wang W; Liu L; Wang X
    PLoS One; 2018; 13(9):e0203824. PubMed ID: 30216380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. WMLRR: A Weighted Multi-View Low Rank Representation to Identify Cancer Subtypes From Multiple Types of Omics Data.
    Sun Y; Ou-Yang L; Dai DQ
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2891-2897. PubMed ID: 33656995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracting a biologically latent space of lung cancer epigenetics with variational autoencoders.
    Wang Z; Wang Y
    BMC Bioinformatics; 2019 Nov; 20(Suppl 18):568. PubMed ID: 31760935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparative study of clustering methods on gene expression data for lung cancer prognosis.
    Zhang JZ; Wang C
    BMC Res Notes; 2023 Nov; 16(1):319. PubMed ID: 37941025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrative subspace clustering by common and specific decomposition for applications on cancer subtype identification.
    Guo Y; Li H; Cai M; Li L
    BMC Med Genomics; 2019 Dec; 12(Suppl 9):191. PubMed ID: 31874642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clustering of cancer data based on Stiefel manifold for multiple views.
    Tian J; Zhao J; Zheng C
    BMC Bioinformatics; 2021 May; 22(1):268. PubMed ID: 34034643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model.
    Suter P; Dazert E; Kuipers J; Ng CKY; Boldanova T; Hall MN; Heim MH; Beerenwinkel N
    PLoS Comput Biol; 2022 Sep; 18(9):e1009767. PubMed ID: 36067230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subtype identification from heterogeneous TCGA datasets on a genomic scale by multi-view clustering with enhanced consensus.
    Cai M; Li L
    BMC Med Genomics; 2017 Dec; 10(Suppl 4):75. PubMed ID: 29322925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MOCSS: Multi-omics data clustering and cancer subtyping via shared and specific representation learning.
    Chen Y; Wen Y; Xie C; Chen X; He S; Bo X; Zhang Z
    iScience; 2023 Aug; 26(8):107378. PubMed ID: 37559907
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiview Robust Graph-Based Clustering for Cancer Subtype Identification.
    Shi X; Liang C; Wang H
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):544-556. PubMed ID: 35044919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Multiview Clustering Method With Low-Rank and Sparsity Constraints for Cancer Subtyping.
    Zhanpeng H; Jiekang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3213-3223. PubMed ID: 34705654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics.
    Hu Q; Greene CS
    Pac Symp Biocomput; 2019; 24():362-373. PubMed ID: 30963075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.