These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 37100024)

  • 81. MultiGATAE: A Novel Cancer Subtype Identification Method Based on Multi-Omics and Attention Mechanism.
    Zhang G; Peng Z; Yan C; Wang J; Luo J; Luo H
    Front Genet; 2022; 13():855629. PubMed ID: 35391797
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Multi-omics data fusion using adaptive GTO guided Non-negative matrix factorization for cancer subtype discovery.
    Bansal B; Sahoo A
    Comput Methods Programs Biomed; 2023 Jan; 228():107246. PubMed ID: 36434961
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data.
    Yang H; Chen R; Li D; Wang Z
    Bioinformatics; 2021 Aug; 37(16):2231-2237. PubMed ID: 33599254
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data.
    Xu J; Wu P; Chen Y; Meng Q; Dawood H; Dawood H
    BMC Bioinformatics; 2019 Oct; 20(1):527. PubMed ID: 31660856
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Spectral clustering strategies for heterogeneous disease expression data.
    Huang GT; Cunningham KI; Benos PV; Chennubhotla CS
    Pac Symp Biocomput; 2013; ():212-23. PubMed ID: 23424126
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Traveling on discrete embeddings of gene expression.
    Lovato P; Bicego M; Kesa M; Jojic N; Murino V; Perina A
    Artif Intell Med; 2016 Jun; 70():1-11. PubMed ID: 27431033
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Achieving deep clustering through the use of variational autoencoders and similarity-based loss.
    Ma H
    Math Biosci Eng; 2022 Jul; 19(10):10344-10360. PubMed ID: 36031997
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A Protein Interaction Information-based Generative Model for Enhancing Gene Clustering.
    Dutta P; Saha S; Pai S; Kumar A
    Sci Rep; 2020 Jan; 10(1):665. PubMed ID: 31959782
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Inferring disease subtypes from clusters in explanation space.
    Schulz MA; Chapman-Rounds M; Verma M; Bzdok D; Georgatzis K
    Sci Rep; 2020 Jul; 10(1):12900. PubMed ID: 32732917
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Learning to encode cellular responses to systematic perturbations with deep generative models.
    Xue Y; Ding MQ; Lu X
    NPJ Syst Biol Appl; 2020 Nov; 6(1):35. PubMed ID: 33159077
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Clinical subtyping using community detection: Limited utility?
    Agelink van Rentergem JA; Bathelt J; Geurts HM
    Int J Methods Psychiatr Res; 2023 Jun; 32(2):e1951. PubMed ID: 36415153
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Phenotypic subtyping via contrastive learning.
    Gorla A; Sankararaman S; Burchard E; Flint J; Zaitlen N; Rahmani E
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711575
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Joint inference of discrete cell types and continuous type-specific variability in single-cell datasets with MMIDAS.
    Marghi Y; Gala R; Baftizadeh F; Sümbül U
    bioRxiv; 2024 Jul; ():. PubMed ID: 37873271
    [TBL] [Abstract][Full Text] [Related]  

  • 94. MultiVI: deep generative model for the integration of multimodal data.
    Ashuach T; Gabitto MI; Koodli RV; Saldi GA; Jordan MI; Yosef N
    Nat Methods; 2023 Aug; 20(8):1222-1231. PubMed ID: 37386189
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A Contrastive-Learning-Based Deep Neural Network for Cancer Subtyping by Integrating Multi-Omics Data.
    Chai H; Deng W; Wei J; Guan T; He M; Liang Y; Li L
    Interdiscip Sci; 2024 Dec; 16(4):966-975. PubMed ID: 39230797
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Learning vector quantized representation for cancer subtypes identification.
    Chen Z; Yang Z; Zhu L; Gao P; Matsubara T; Kanaya S; Altaf-Ul-Amin M
    Comput Methods Programs Biomed; 2023 Jun; 236():107543. PubMed ID: 37100024
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Multi-view spectral clustering with latent representation learning for applications on multi-omics cancer subtyping.
    Ge S; Liu J; Cheng Y; Meng X; Wang X
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36445207
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping.
    Cai Y; Wang S
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426322
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Cancer Subtyping via Embedded Unsupervised Learning on Transcriptomics Data.
    Yang Z; Zhu L; Chen Z; Huang M; Ono N; Altaf-Ul-Amin MD; Kanaya S
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1113-1116. PubMed ID: 36085834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.