These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
461 related articles for article (PubMed ID: 37100185)
1. Boosting stability and therapeutic potential of proteolysis-resistant antimicrobial peptides by end-tagging β-naphthylalanine. He S; Yang Z; Li X; Wu H; Zhang L; Shan A; Wang J Acta Biomater; 2023 Jul; 164():175-194. PubMed ID: 37100185 [TBL] [Abstract][Full Text] [Related]
2. Optimized proteolytic resistance motif (DabW)-based U1-2WD: A membrane-induced self-aggregating peptide to trigger bacterial agglutination and death. He S; Yang Z; Li X; Wu H; Zhang L; Wang J; Shan A Acta Biomater; 2022 Nov; 153():540-556. PubMed ID: 36162762 [TBL] [Abstract][Full Text] [Related]
3. The design of cell-selective tryptophan and arginine-rich antimicrobial peptides by introducing hydrophilic uncharged residues. Zhu Y; Akhtar MU; Li B; Chou S; Shao C; Li J; Shan A Acta Biomater; 2022 Nov; 153():557-572. PubMed ID: 36115654 [TBL] [Abstract][Full Text] [Related]
4. Therapeutic Potential of Trp-Rich Engineered Amphiphiles by Single Hydrophobic Amino Acid End-Tagging. Song J; Wang J; Zhan N; Sun T; Yu W; Zhang L; Shan A; Zhang A ACS Appl Mater Interfaces; 2019 Nov; 11(47):43820-43834. PubMed ID: 31687796 [TBL] [Abstract][Full Text] [Related]
5. End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. Pasupuleti M; Schmidtchen A; Chalupka A; Ringstad L; Malmsten M PLoS One; 2009; 4(4):e5285. PubMed ID: 19381271 [TBL] [Abstract][Full Text] [Related]
6. Current synthetic chemistry towards cyclic antimicrobial peptides. He T; Qu R; Zhang J J Pept Sci; 2022 Jun; 28(6):e3387. PubMed ID: 34931393 [TBL] [Abstract][Full Text] [Related]
7. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria. Ebbensgaard A; Mordhorst H; Overgaard MT; Nielsen CG; Aarestrup FM; Hansen EB PLoS One; 2015; 10(12):e0144611. PubMed ID: 26656394 [TBL] [Abstract][Full Text] [Related]
8. Enhancing the antibacterial activity of antimicrobial peptide PMAP-37(F34-R) by cholesterol modification. Chen L; Shen T; Liu Y; Zhou J; Shi S; Wang Y; Zhao Z; Yan Z; Liao C; Wang C BMC Vet Res; 2020 Nov; 16(1):419. PubMed ID: 33138816 [TBL] [Abstract][Full Text] [Related]
9. Effective antimicrobial activity of a peptide mutant Cbf-14-2 against penicillin-resistant bacteria based on its unnatural amino acids. Kang W; Liu H; Ma L; Wang M; Wei S; Sun P; Jiang M; Guo M; Zhou C; Dou J Eur J Pharm Sci; 2017 Jul; 105():169-177. PubMed ID: 28522372 [TBL] [Abstract][Full Text] [Related]
10. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. Kim H; Jang JH; Kim SC; Cho JH J Antimicrob Chemother; 2014 Jan; 69(1):121-32. PubMed ID: 23946320 [TBL] [Abstract][Full Text] [Related]
11. Unnatural amino acids: promising implications for the development of new antimicrobial peptides. Wang X; Yang X; Wang Q; Meng D Crit Rev Microbiol; 2023 Mar; 49(2):231-255. PubMed ID: 35254957 [TBL] [Abstract][Full Text] [Related]
12. Designing the antimicrobial peptide with centrosymmetric and amphipathic characterizations for improving antimicrobial activity. Lee PC; Yen CF; Lin CC; Lung FT J Pept Sci; 2023 Nov; 29(11):e3510. PubMed ID: 37151189 [TBL] [Abstract][Full Text] [Related]
13. Hybridization with Insect Cecropin A (1-8) Improve the Stability and Selectivity of Naturally Occurring Peptides. Yang Y; Wu D; Wang C; Shan A; Bi C; Li Y; Gan W Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098142 [TBL] [Abstract][Full Text] [Related]
14. Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic β-sheet forming peptide amphiphiles. Ong ZY; Cheng J; Huang Y; Xu K; Ji Z; Fan W; Yang YY Biomaterials; 2014 Jan; 35(4):1315-25. PubMed ID: 24211081 [TBL] [Abstract][Full Text] [Related]
15. Small cationic antimicrobial peptidomimetics: emerging candidate for the development of potential anti-infective agents. Lohan S; Bisht GS Curr Pharm Des; 2013; 19(32):5809-23. PubMed ID: 23656460 [TBL] [Abstract][Full Text] [Related]
16. Establishing Quantifiable Guidelines for Antimicrobial α/β-Peptide Design: A Partial Least-Squares Approach to Improve Antimicrobial Activity and Reduce Mammalian Cell Toxicity. Chang DH; Lee MR; Wang N; Lynn DM; Palecek SP ACS Infect Dis; 2023 Dec; 9(12):2632-2651. PubMed ID: 38014670 [TBL] [Abstract][Full Text] [Related]
17. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Lai Z; Yuan X; Chen H; Zhu Y; Dong N; Shan A Biotechnol Adv; 2022 Oct; 59():107962. PubMed ID: 35452776 [TBL] [Abstract][Full Text] [Related]
18. Antimicrobial peptides conjugated with fatty acids on the side chain of D-amino acid promises antimicrobial potency against multidrug-resistant bacteria. Zhong C; Zhu N; Zhu Y; Liu T; Gou S; Xie J; Yao J; Ni J Eur J Pharm Sci; 2020 Jan; 141():105123. PubMed ID: 31676352 [TBL] [Abstract][Full Text] [Related]
19. Hydrocarbon stapled temporin-L analogue as potential antibacterial and antiendotoxin agents with enhanced protease stability. Mahto AK; Kanupriya ; Kumari S; Yar MS; Dewangan RP Bioorg Chem; 2024 Apr; 145():107239. PubMed ID: 38428282 [TBL] [Abstract][Full Text] [Related]
20. Central β-turn increases the cell selectivity of imperfectly amphipathic α-helical peptides. Shao C; Tian H; Wang T; Wang Z; Chou S; Shan A; Cheng B Acta Biomater; 2018 Mar; 69():243-255. PubMed ID: 29355714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]