These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 37100319)
1. Multi-omics-based identification of purple acid phosphatases and metabolites involved in phosphorus recycling in stylo root exudates. Wu Y; Zhao C; Zhao X; Yang L; Liu C; Jiang L; Liu G; Liu P; Luo L Int J Biol Macromol; 2023 Jun; 241():124569. PubMed ID: 37100319 [TBL] [Abstract][Full Text] [Related]
2. Multi-omics analysis reveals the roles of purple acid phosphatases in organic phosphorus utilization by the tropical legume Stylosanthes guianensis. Luo J; Chen Z; Huang R; Wu Y; Liu C; Cai Z; Dong R; Arango J; Rao IM; Schultze-Kraft R; Liu G; Liu P Plant J; 2024 Feb; 117(3):729-746. PubMed ID: 37932930 [TBL] [Abstract][Full Text] [Related]
3. Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency. Chen Z; Song J; Li X; Arango J; Cardoso JA; Rao I; Schultze-Kraft R; Peters M; Mo X; Liu G BMC Plant Biol; 2021 Oct; 21(1):466. PubMed ID: 34645406 [TBL] [Abstract][Full Text] [Related]
4. Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency. Luo J; Liu Y; Zhang H; Wang J; Chen Z; Luo L; Liu G; Liu P BMC Plant Biol; 2020 Feb; 20(1):85. PubMed ID: 32087672 [TBL] [Abstract][Full Text] [Related]
5. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes. Liu PD; Xue YB; Chen ZJ; Liu GD; Tian J J Exp Bot; 2016 Jul; 67(14):4141-54. PubMed ID: 27194738 [TBL] [Abstract][Full Text] [Related]
6. Characterization of phosphate transporter genes and the function of SgPT1 involved in phosphate uptake in Stylosanthes guianensis. An N; Huang J; Xue Y; Liu P; Liu G; Zhu S; Chen Z Plant Physiol Biochem; 2023 Jan; 194():731-741. PubMed ID: 36577197 [TBL] [Abstract][Full Text] [Related]
7. Development of transgenic composite Stylosanthes plants to study root growth regulated by a β-expansin gene, SgEXPB1, under phosphorus deficiency. Wang L; Wang W; Miao Y; Peters M; Schultze-Kraft R; Liu G; Chen Z Plant Cell Rep; 2023 Mar; 42(3):575-585. PubMed ID: 36624204 [TBL] [Abstract][Full Text] [Related]
8. Characterization of SgALMT genes reveals the function of SgALMT2 in conferring aluminum tolerance in Stylosanthes guianensis through the mediation of malate exudation. Miao Y; Hu X; Wang L; Schultze-Kraft R; Wang W; Chen Z Plant Physiol Biochem; 2024 Mar; 208():108535. PubMed ID: 38503187 [TBL] [Abstract][Full Text] [Related]
9. The Stylo Cysteine-Rich Peptide Guo X; Zhu S; Xue Y; Lin Y; Mao J; Li S; Liang C; Lu X; Tian J Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928379 [TBL] [Abstract][Full Text] [Related]
10. A root-associated purple acid phosphatase, SgPAP23, mediates extracellular phytate-P utilization in Stylosanthes guianensis. Liu P; Cai Z; Chen Z; Mo X; Ding X; Liang C; Liu G; Tian J Plant Cell Environ; 2018 Dec; 41(12):2821-2834. PubMed ID: 30066375 [TBL] [Abstract][Full Text] [Related]
11. Mass spectrometry-based quantification and spatial localization of small organic acid exudates in plant roots under phosphorus deficiency and aluminum toxicity. Gomez-Zepeda D; Frausto M; Nájera-González HR; Herrera-Estrella L; Ordaz-Ortiz JJ Plant J; 2021 Jun; 106(6):1791-1806. PubMed ID: 33797826 [TBL] [Abstract][Full Text] [Related]
12. Phosphorus deficiency alters root length, acid phosphatase activity, organic acids, and metabolites in root exudates of soybean cultivars. Tantriani ; Cheng W; Oikawa A; Tawaraya K Physiol Plant; 2023; 175(6):e14107. PubMed ID: 38148232 [TBL] [Abstract][Full Text] [Related]
13. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. Robinson WD; Park J; Tran HT; Del Vecchio HA; Ying S; Zins JL; Patel K; McKnight TD; Plaxton WC J Exp Bot; 2012 Nov; 63(18):6531-42. PubMed ID: 23125358 [TBL] [Abstract][Full Text] [Related]
14. The cell wall-targeted purple acid phosphatase AtPAP25 is critical for acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation. Del Vecchio HA; Ying S; Park J; Knowles VL; Kanno S; Tanoi K; She YM; Plaxton WC Plant J; 2014 Nov; 80(4):569-81. PubMed ID: 25270985 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice. Tian J; Wang C; Zhang Q; He X; Whelan J; Shou H J Integr Plant Biol; 2012 Sep; 54(9):631-9. PubMed ID: 22805094 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome analysis provides insights into the root response of Chinese fir to phosphorus deficiency. Chen W; Zhou M; Zhao M; Chen R; Tigabu M; Wu P; Li M; Ma X BMC Plant Biol; 2021 Nov; 21(1):525. PubMed ID: 34758730 [TBL] [Abstract][Full Text] [Related]
20. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance. Kumar S; Pallavi ; Chugh C; Seem K; Kumar S; Vinod KK; Mohapatra T BMC Plant Biol; 2021 Jun; 21(1):282. PubMed ID: 34154533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]