These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37100335)

  • 1. Transcriptome analysis reveals a common adaptive transcriptional response of Candida glabrata to diverse environmental stresses.
    Rai MN; Rai R; Sethiya P; Parsania C
    Res Microbiol; 2023 Jun; 174(5):104073. PubMed ID: 37100335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifactorial Role of Mitochondria in Echinocandin Tolerance Revealed by Transcriptome Analysis of Drug-Tolerant Cells.
    Garcia-Rubio R; Jimenez-Ortigosa C; DeGregorio L; Quinteros C; Shor E; Perlin DS
    mBio; 2021 Aug; 12(4):e0195921. PubMed ID: 34372698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational inference of the transcriptional regulatory network of Candida glabrata.
    Xu N; Liu L
    FEMS Yeast Res; 2019 Jun; 19(4):. PubMed ID: 31034021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global gene expression reveals stress-responsive genes in Aspergillus fumigatus mycelia.
    Takahashi H; Kusuya Y; Hagiwara D; Takahashi-Nakaguchi A; Sakai K; Gonoi T
    BMC Genomics; 2017 Dec; 18(1):942. PubMed ID: 29202712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptome and gene co-expression network analysis reveal genes and signaling pathways adaptively responsive to varied adverse stresses in the insect fungal pathogen, Beauveria bassiana.
    He Z; Zhao X; Lu Z; Wang H; Liu P; Zeng F; Zhang Y
    J Invertebr Pathol; 2018 Jan; 151():169-181. PubMed ID: 29258843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival Strategies of Pathogenic
    Kämmer P; McNamara S; Wolf T; Conrad T; Allert S; Gerwien F; Hünniger K; Kurzai O; Guthke R; Hube B; Linde J; Brunke S
    mBio; 2020 Oct; 11(5):. PubMed ID: 33024045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial stresses kill pathogenic Candida species.
    Kaloriti D; Tillmann A; Cook E; Jacobsen M; You T; Lenardon M; Ames L; Barahona M; Chandrasekaran K; Coghill G; Goodman D; Gow NA; Grebogi C; Ho HL; Ingram P; McDonagh A; de Moura AP; Pang W; Puttnam M; Radmaneshfar E; Romano MC; Silk D; Stark J; Stumpf M; Thiel M; Thorne T; Usher J; Yin Z; Haynes K; Brown AJ
    Med Mycol; 2012 Oct; 50(7):699-709. PubMed ID: 22463109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tec1 and Ste12 transcription factors play a role in adaptation to low pH stress and biofilm formation in the human opportunistic fungal pathogen Candida glabrata.
    Purohit D; Gajjar D
    Int Microbiol; 2022 Nov; 25(4):789-802. PubMed ID: 35829973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata.
    Briones-Martin-Del-Campo M; Orta-Zavalza E; Juarez-Cepeda J; Gutierrez-Escobedo G; Cañas-Villamar I; Castaño I; De Las Peñas A
    Rev Iberoam Micol; 2014; 31(1):67-71. PubMed ID: 24270068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Noncanonical DNA Damage Checkpoint Response in a Major Fungal Pathogen.
    Shor E; Garcia-Rubio R; DeGregorio L; Perlin DS
    mBio; 2020 Dec; 11(6):. PubMed ID: 33323516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: perspectives from Candida albicans and Saccharomyces cerevisiae.
    Chew SY; Chee WJY; Than LTL
    J Biomed Sci; 2019 Jul; 26(1):52. PubMed ID: 31301737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Virulence of the opportunistic pathogen mushroom Candida glabrata].
    Castaño I; Cormack B; De Las Peñas A
    Rev Latinoam Microbiol; 2006; 48(2):66-9. PubMed ID: 17578074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mitogen-activated protein kinase CgHog1 is required for iron homeostasis, adherence and virulence in Candida glabrata.
    Srivastava VK; Suneetha KJ; Kaur R
    FEBS J; 2015 Jun; 282(11):2142-66. PubMed ID: 25772226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic and proteomic profiling revealed reprogramming of carbon metabolism in acetate-grown human pathogen Candida glabrata.
    Chew SY; Brown AJP; Lau BYC; Cheah YK; Ho KL; Sandai D; Yahaya H; Than LTL
    J Biomed Sci; 2021 Jan; 28(1):1. PubMed ID: 33388061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway.
    He BZ; Zhou X; O'Shea EK
    Elife; 2017 May; 6():. PubMed ID: 28485712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional responses of
    Alves R; Kastora SL; Gomes-Gonçalves A; Azevedo N; Rodrigues CF; Silva S; Demuyser L; Van Dijck P; Casal M; Brown AJP; Henriques M; Paiva S
    NPJ Biofilms Microbiomes; 2020; 6():4. PubMed ID: 31993211
    [No Abstract]   [Full Text] [Related]  

  • 17. Transcriptomic analysis reveals global and temporal transcription changes during Candida glabrata adaptation to an oxidative environment.
    Sethiya P; Rai MN; Rai R; Parsania C; Tan K; Wong KH
    Fungal Biol; 2020 May; 124(5):427-439. PubMed ID: 32389305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining the transcriptomic landscape of Candida glabrata by RNA-Seq.
    Linde J; Duggan S; Weber M; Horn F; Sieber P; Hellwig D; Riege K; Marz M; Martin R; Guthke R; Kurzai O
    Nucleic Acids Res; 2015 Feb; 43(3):1392-406. PubMed ID: 25586221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using
    Schrevens S; Durandau E; Tran VDT; Sanglard D
    Virulence; 2022 Dec; 13(1):1285-1303. PubMed ID: 35795910
    [No Abstract]   [Full Text] [Related]  

  • 20. Host-pathogen interaction in
    Rasheed M; Battu A; Kaur R
    Expert Rev Anti Infect Ther; 2020 Nov; 18(11):1093-1103. PubMed ID: 32668993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.