These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37100839)

  • 1. Optimism persists when walking in unpredictable environments.
    Bucklin MA; Deol J; Brown G; Perreault EJ; Gordon KE
    Sci Rep; 2023 Apr; 13(1):6853. PubMed ID: 37100839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. People adapt a consistent center-of-mass trajectory in a novel force field.
    Bucklin MA; Brown G; Gordon KE
    J Neurophysiol; 2023 Feb; 129(2):298-306. PubMed ID: 36542421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. American Society of Biomechanics Journal of Biomechanics Award 2018: Adaptive motor planning of center-of-mass trajectory during goal-directed walking in novel environments.
    Bucklin MA; Wu M; Brown G; Gordon KE
    J Biomech; 2019 Sep; 94():5-12. PubMed ID: 31416592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prior uncertainty impedes discrete locomotor adaptation.
    Jiang A; Grover FM; Bucklin M; Deol J; Shafer A; Gordon KE
    PLoS One; 2024; 19(2):e0291284. PubMed ID: 38363788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meaningful measurements of maneuvers: People with incomplete spinal cord injury 'step up' to the challenges of altered stability requirements.
    Ochs WL; Woodward J; Cornwell T; Gordon KE
    J Neuroeng Rehabil; 2021 Mar; 18(1):46. PubMed ID: 33653370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait variability following abrupt removal of external stabilization decreases with practice in incomplete spinal cord injury but increases in non-impaired individuals.
    Wu MM; Brown GL; Kim KA; Kim J; Gordon KE
    J Neuroeng Rehabil; 2019 Jan; 16(1):4. PubMed ID: 30612582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of locomotor stability in stabilizing and destabilizing environments.
    Wu MM; Brown G; Gordon KE
    Gait Posture; 2017 Jun; 55():191-198. PubMed ID: 28477529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. External postural perturbations induce multiple anticipatory postural adjustments when subjects cannot pre-select their stepping foot.
    Jacobs JV; Horak FB
    Exp Brain Res; 2007 May; 179(1):29-42. PubMed ID: 17091288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-Stroke Adaptation of Lateral Foot Placement Coordination in Variable Environments.
    Dragunas AC; Cornwell T; Lopez-Rosado R; Gordon KE
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():731-739. PubMed ID: 33835919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetrical stabilization and mobilization exploited during static single leg stance and goal directed kicking.
    King AC; Wang Z
    Hum Mov Sci; 2017 Aug; 54():182-190. PubMed ID: 28501732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotor adaptations to prolonged step-by-step frontal plane trunk perturbations in young adults.
    Walker ER; Hyngstrom AS; Onushko T; Schmit BD
    PLoS One; 2018; 13(9):e0203776. PubMed ID: 30235250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance.
    Noel M; Fortin K; Bouyer LJ
    J Neuroeng Rehabil; 2009 Jun; 6():16. PubMed ID: 19493356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking.
    Houldin A; Chua R; Carpenter MG; Lam T
    J Neurophysiol; 2012 Aug; 108(3):943-52. PubMed ID: 22592310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different functional networks underlying human walking with pulling force fields acting in forward or backward directions.
    Ogawa T; Obata H; Yokoyama H; Kawashima N; Nakazawa K
    Sci Rep; 2023 Feb; 13(1):1909. PubMed ID: 36732556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms for force adjustments to unpredictable frictional changes at individual digits during two-fingered manipulation.
    Birznieks I; Burstedt MK; Edin BB; Johansson RS
    J Neurophysiol; 1998 Oct; 80(4):1989-2002. PubMed ID: 9772255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How persons with transtibial amputation regulate lateral stepping while walking in laterally destabilizing environments.
    Dingwell JB; Cusumano JP; Rylander JH; Wilken JM
    Gait Posture; 2021 Jan; 83():88-95. PubMed ID: 33099136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical characteristics of handstand walking initiation.
    Grabowiecki M; Rum L; Laudani L; Vannozzi G
    Gait Posture; 2021 May; 86():311-318. PubMed ID: 33839425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel Movement Amplification environment reveals effects of controlling lateral centre of mass motion on gait stability and metabolic cost.
    Wu M; Brown GL; Woodward JL; Bruijn SM; Gordon KE
    R Soc Open Sci; 2020 Jan; 7(1):190889. PubMed ID: 32218932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization Strategies for Fast Walking in Challenging Environments With Incomplete Spinal Cord Injury.
    Cornwell T; Woodward J; Ochs W; Gordon KE
    Front Rehabil Sci; 2021; 2():709420. PubMed ID: 36188795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel strategies in feedforward adaptation to a position-dependent perturbation.
    Hinder MR; Milner TE
    Exp Brain Res; 2005 Aug; 165(2):239-49. PubMed ID: 15856204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.