These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 37101113)

  • 1. Magicmol: a light-weighted pipeline for drug-like molecule evolution and quick chemical space exploration.
    Chen L; Shen Q; Lou J
    BMC Bioinformatics; 2023 Apr; 24(1):173. PubMed ID: 37101113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo drug design based on Stack-RNN with multi-objective reward-weighted sum and reinforcement learning.
    Hu P; Zou J; Yu J; Shi S
    J Mol Model; 2023 Mar; 29(4):121. PubMed ID: 36991180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep inverse reinforcement learning for structural evolution of small molecules.
    Agyemang B; Wu WP; Addo D; Kpiebaareh MY; Nanor E; Roland Haruna C
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33348357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology.
    Liu X; Ye K; van Vlijmen HWT; Emmerich MTM; IJzerman AP; van Westen GJP
    J Cheminform; 2021 Nov; 13(1):85. PubMed ID: 34772471
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Staker J; Marshall K; Leswing K; Robertson T; Halls MD; Goldberg A; Morisato T; Maeshima H; Ando T; Arai H; Sasago M; Fujii E; Matsuzawa NN
    J Phys Chem A; 2022 Sep; 126(34):5837-5852. PubMed ID: 35984470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training recurrent neural networks as generative neural networks for molecular structures: how does it impact drug discovery?
    D'Souza S; Kv P; Balaji S
    Expert Opin Drug Discov; 2022 Oct; 17(10):1071-1079. PubMed ID: 36216812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A
    Liu X; Ye K; van Vlijmen HWT; IJzerman AP; van Westen GJP
    J Cheminform; 2019 May; 11(1):35. PubMed ID: 31127405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo drug design as GPT language modeling: large chemistry models with supervised and reinforcement learning.
    Ye G
    J Comput Aided Mol Des; 2024 Apr; 38(1):20. PubMed ID: 38647700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Faster and more diverse de novo molecular optimization with double-loop reinforcement learning using augmented SMILES.
    Bjerrum EJ; Margreitter C; Blaschke T; Kolarova S; de Castro RL
    J Comput Aided Mol Des; 2023 Aug; 37(8):373-394. PubMed ID: 37329395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memory augmented recurrent neural networks for de-novo drug design.
    Suresh N; Chinnakonda Ashok Kumar N; Subramanian S; Srinivasa G
    PLoS One; 2022; 17(6):e0269461. PubMed ID: 35737661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative Deep Learning for Targeted Compound Design.
    Sousa T; Correia J; Pereira V; Rocha M
    J Chem Inf Model; 2021 Nov; 61(11):5343-5361. PubMed ID: 34699719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generative Recurrent Networks for De Novo Drug Design.
    Gupta A; Müller AT; Huisman BJH; Fuchs JA; Schneider P; Schneider G
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29095571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generative machine learning for de novo drug discovery: A systematic review.
    Martinelli DD
    Comput Biol Med; 2022 Jun; 145():105403. PubMed ID: 35339849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforced Adversarial Neural Computer for de Novo Molecular Design.
    Putin E; Asadulaev A; Ivanenkov Y; Aladinskiy V; Sanchez-Lengeling B; Aspuru-Guzik A; Zhavoronkov A
    J Chem Inf Model; 2018 Jun; 58(6):1194-1204. PubMed ID: 29762023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES.
    Nigam A; Pollice R; Krenn M; Gomes GDP; Aspuru-Guzik A
    Chem Sci; 2021 Apr; 12(20):7079-7090. PubMed ID: 34123336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modern machine learning for tackling inverse problems in chemistry: molecular design to realization.
    Sridharan B; Goel M; Priyakumar UD
    Chem Commun (Camb); 2022 Apr; 58(35):5316-5331. PubMed ID: 35416193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guidelines for Recurrent Neural Network Transfer Learning-Based Molecular Generation of Focused Libraries.
    Amabilino S; Pogány P; Pickett SD; Green DVS
    J Chem Inf Model; 2020 Dec; 60(12):5699-5713. PubMed ID: 32659085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of Chemical Space Guided by PixelCNN for Fragment-Based De Novo Drug Discovery.
    Noguchi S; Inoue J
    J Chem Inf Model; 2022 Dec; 62(23):5988-6001. PubMed ID: 36454646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Navigating the frontier of drug-like chemical space with cutting-edge generative AI models.
    Lavecchia A
    Drug Discov Today; 2024 Sep; 29(9):104133. PubMed ID: 39103144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.