These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37101704)

  • 1. Spectrally non-overlapping background noise disturbs echolocation via acoustic masking in the CF-FM bat,
    Zou J; Jin B; Ao Y; Han Y; Huang B; Jia Y; Yang L; Jia Y; Chen Q; Fu Z
    Conserv Physiol; 2023; 11(1):coad017. PubMed ID: 37101704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The second harmonic neurons in auditory midbrain of Hipposideros pratti are more tolerant to background white noise.
    Cui Z; Zhang G; Zhou D; Wu J; Liu L; Tang J; Chen Q; Fu Z
    Hear Res; 2021 Feb; 400():108142. PubMed ID: 33310564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Echolocating bats exhibit differential amplitude compensation for noise interference at a sub-call level.
    Lu M; Zhang G; Luo J
    J Exp Biol; 2020 Oct; 223(Pt 19):. PubMed ID: 32843365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sexual dimorphism in echolocation pulse parameters of the CF-FM bat,
    Fu ZY; Dai XY; Xu N; Shi Q; Li GJ; Li B; Li J; Li J; Tang J; Jen PH; Chen QC
    Zool Stud; 2015; 54():e44. PubMed ID: 31966131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constant Resting Frequency and Auditory Midbrain Neuronal Frequency Analysis of
    Zhang G; Cui Z; Wu J; Jin B; Zhou D; Liu L; Tang J; Chen Q; Fu Z
    Front Behav Neurosci; 2021; 15():657155. PubMed ID: 34113242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Background noise responding neurons in the inferior colliculus of the CF-FM bat, Hipposideros pratti.
    Zhang G; Cui Z; Fan Z; Yang L; Jia Y; Chen Q; Fu Z
    Hear Res; 2023 May; 432():108742. PubMed ID: 37004270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplitude- and duration-sensitivity of single-on and double-on neurons to CF-FM stimuli in inferior colliculus of Pratt's roundleaf bat (Hipposideros pratti).
    Yang MJ; Peng K; Wang J; Tang J; Fu ZY; Wang X; Chen QC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Jul; 204(7):653-665. PubMed ID: 29876656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Echolocation sound waves, morphological features and foraging strategies in Hipposideros pratti].
    Chen M; Feng J; Li Z; Zhou J; Zhao H; Zhang S; Sheng L
    Ying Yong Sheng Tai Xue Bao; 2002 Dec; 13(12):1629-32. PubMed ID: 12682970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Duration-sensitive neurons in the inferior colliculus of horseshoe bats: adaptations for using CF-FM echolocation pulses.
    Luo F; Metzner W; Wu F; Zhang S; Chen Q
    J Neurophysiol; 2008 Jan; 99(1):284-96. PubMed ID: 18003879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evoked potential study of the inferior collicular response to constant frequency-frequency modulation (CF-FM) sounds in FM and CF-FM bats.
    Fu Z; Xu N; Zhang G; Zhou D; Liu L; Tang J; Jen PH; Chen Q
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Apr; 205(2):239-252. PubMed ID: 30903279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Echolocating Daubenton's bats are resilient to broadband, ultrasonic masking noise during active target approaches.
    Foskolos I; Bjerre Pedersen M; Beedholm K; Uebel AS; Macaulay J; Stidsholt L; Brinkløv S; Madsen PT
    J Exp Biol; 2022 Feb; 225(3):. PubMed ID: 35037031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of echolocation behavior-related constant frequency-frequency modulation sound on the frequency tuning of inferior collicular neurons in Hipposideros armiger.
    Tang J; Fu ZY; Wei CX; Chen QC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Aug; 201(8):783-94. PubMed ID: 26026915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery cycle of inferior collicular neurons in Hipposideros pratti under behavior-related sound stimulus and the best Doppler-shift compensation conditions.
    Tang J; Wei CX; Chen MX; Wang QC; Kong HF; Fu ZY; Chen QC
    Physiol Behav; 2017 Mar; 171():236-242. PubMed ID: 28108331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Echo feedback mediates noise-induced vocal modifications in flying bats.
    Luo J; Lu M; Luo J; Moss CF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jan; 209(1):203-214. PubMed ID: 36266485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambient noise causes independent changes in distinct spectro-temporal features of echolocation calls in horseshoe bats.
    Hage SR; Jiang T; Berquist SW; Feng J; Metzner W
    J Exp Biol; 2014 Jul; 217(Pt 14):2440-4. PubMed ID: 24855671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural echolocation sequences evoke echo-delay selectivity in the auditory midbrain of the FM bat, Eptesicus fuscus.
    Macías S; Luo J; Moss CF
    J Neurophysiol; 2018 Sep; 120(3):1323-1339. PubMed ID: 29924708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid frequency control of sonar sounds by the FM bat, Miniopterus fuliginosus, in response to spectral overlap.
    Hase K; Miyamoto T; Kobayasi KI; Hiryu S
    Behav Processes; 2016 Jul; 128():126-33. PubMed ID: 27157002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential effects of anthropogenic noise on echolocation behavior in horseshoe bats.
    Hage SR; Metzner W
    Commun Integr Biol; 2013 Jul; 6(4):e24753. PubMed ID: 23986811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosonar signals and cerebellar auditory neurons of the mustached bat.
    Horikawa J; Suga N
    J Neurophysiol; 1986 Jun; 55(6):1247-67. PubMed ID: 3734857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bats increase vocal amplitude and decrease vocal complexity to mitigate noise interference during social communication.
    Jiang T; Guo X; Lin A; Wu H; Sun C; Feng J; Kanwal JS
    Anim Cogn; 2019 Mar; 22(2):199-212. PubMed ID: 30631993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.