These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37101752)

  • 1. Effects of stance control
    Sánchez-Manchola M; Arciniegas-Mayag L; Múnera M; Bourgain M; Provot T; Cifuentes CA
    Front Bioeng Biotechnol; 2023; 11():1021525. PubMed ID: 37101752
    [No Abstract]   [Full Text] [Related]  

  • 2. Overground Walking With a Transparent Exoskeleton Shows Changes in Spatiotemporal Gait Parameters.
    Andrade RM; Sapienza S; Mohebbi A; Fabara EE; Bonato P
    IEEE J Transl Eng Health Med; 2024; 12():182-193. PubMed ID: 38088995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy.
    Chen J; Hochstein J; Kim C; Tucker L; Hammel LE; Damiano DL; Bulea TC
    Front Robot AI; 2021; 8():702137. PubMed ID: 34222356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical Effects of Adding an Ankle Soft Actuation in a Unilateral Exoskeleton.
    Otálora S; Ballen-Moreno F; Arciniegas-Mayag L; Cifuentes CA; Múnera M
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36291010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immediate after-effects of robot-assisted gait with pelvic support or pelvic constraint on overground walking in healthy subjects.
    Alingh JF; Weerdesteyn V; Nienhuis B; van Asseldonk EHF; Geurts ACH; Groen BE
    J Neuroeng Rehabil; 2019 Mar; 16(1):40. PubMed ID: 30876445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study.
    Sanz-Morère CB; Martini E; Meoni B; Arnetoli G; Giffone A; Doronzio S; Fanciullacci C; Parri A; Conti R; Giovacchini F; Friðriksson Þ; Romo D; Crea S; Molino-Lova R; Vitiello N
    J Neuroeng Rehabil; 2021 Jul; 18(1):111. PubMed ID: 34217307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy.
    Kim SK; Park D; Yoo B; Shim D; Choi JO; Choi TY; Park ES
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic Analysis of Exoskeleton-Assisted Community Ambulation: An Observational Study in Outdoor Real-Life Scenarios.
    Goffredo M; Romano P; Infarinato F; Cioeta M; Franceschini M; Galafate D; Iacopini R; Pournajaf S; Ottaviani M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial.
    Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S
    J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study.
    Puyuelo-Quintana G; Cano-de-la-Cuerda R; Plaza-Flores A; Garces-Castellote E; Sanz-Merodio D; Goñi-Arana A; Marín-Ojea J; García-Armada E
    J Neuroeng Rehabil; 2020 May; 17(1):60. PubMed ID: 32375815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assistive Mobility Control of a Robotic Hip-Knee Exoskeleton for Gait Training.
    Changcheng C; Li YR; Chen CT
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC; White M; White HSF; Vanicek N
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105133. PubMed ID: 32777685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Unified Gait Phase Estimation and Control of Exoskeleton using Virtual Energy Regulator (VER).
    Nasiri R; Dinovitzer H; Arami A
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walking With a Robotic Exoskeleton Does Not Mimic Natural Gait: A Within-Subjects Study.
    Swank C; Wang-Price S; Gao F; Almutairi S
    JMIR Rehabil Assist Technol; 2019 Jan; 6(1):e11023. PubMed ID: 31344681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Lower Limb Exoskeleton on the Modulation of Neural Activity and Gait Classification.
    Tortora S; Tonin L; Sieghartsleitner S; Ortner R; Guger C; Lennon O; Coyle D; Menegatti E; Felice AD
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2988-3003. PubMed ID: 37432820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Varied Load Assistance with Exoskeleton-Type Robotic Device on Gait Rehabilitation in Healthy Adult Men.
    Tanaka T; Matsumura R; Miura T
    Int J Environ Res Public Health; 2022 Aug; 19(15):. PubMed ID: 35955068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robotic exoskeleton to treat crouch gait from cerebral palsy: Initial kinematic and neuromuscular evaluation.
    Lerner ZF; Damiano DL; Bulea TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2214-2217. PubMed ID: 28324959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.