These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 37102085)
41. Environmental Assessment of Ultra-High-Performance Concrete Using Carbon, Material, and Water Footprint. Sameer H; Weber V; Mostert C; Bringezu S; Fehling E; Wetzel A Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30871243 [TBL] [Abstract][Full Text] [Related]
42. Life cycle analysis of pistachio production in Greece. Bartzas G; Komnitsas K Sci Total Environ; 2017 Oct; 595():13-24. PubMed ID: 28376424 [TBL] [Abstract][Full Text] [Related]
43. Life Cycle Assessment of Biofuels. Reijnders L Methods Mol Biol; 2021; 2290():53-67. PubMed ID: 34009582 [TBL] [Abstract][Full Text] [Related]
44. Perspectives on life cycle analysis of solar technologies with emphasis on production in India. Singh S; Dhar A; Powar S J Environ Manage; 2024 Aug; 366():121755. PubMed ID: 39003903 [TBL] [Abstract][Full Text] [Related]
45. A comparative life cycle assessment (LCA) of concrete and steel-prefabricated prefinished volumetric construction structures in Malaysia. Balasbaneh AT; Ramli MZ Environ Sci Pollut Res Int; 2020 Dec; 27(34):43186-43201. PubMed ID: 32734541 [TBL] [Abstract][Full Text] [Related]
46. Economic and environmental life cycle perspectives on two engineered wood products: comparison of LVL and GLT construction materials. Balasbaneh AT; Sher W; Yeoh D; Yasin MN Environ Sci Pollut Res Int; 2023 Feb; 30(10):26964-26981. PubMed ID: 36374387 [TBL] [Abstract][Full Text] [Related]
47. Strategies for enhancing the accuracy of evaluation and sustainability performance of building. Hossain MU; Ng ST J Environ Manage; 2020 May; 261():110230. PubMed ID: 32148300 [TBL] [Abstract][Full Text] [Related]
48. Environmental life cycle assessment of Ethiopian rose cultivation. Sahle A; Potting J Sci Total Environ; 2013 Jan; 443():163-72. PubMed ID: 23183227 [TBL] [Abstract][Full Text] [Related]
49. A comparative analysis of the carbon footprint in green building materials: a case study of Norway. Aboutorabi RSS; Yousefi H; Abdoos M Environ Sci Pollut Res Int; 2024 Oct; 31(49):59320-59341. PubMed ID: 39348018 [TBL] [Abstract][Full Text] [Related]
50. Environmental analysis of the use of plant fiber blocks in building construction. Revuelta-Aramburu M; Verdú-Vázquez A; Gil-López T; Morales-Polo C Sci Total Environ; 2020 Jul; 725():138495. PubMed ID: 32298900 [TBL] [Abstract][Full Text] [Related]
51. Thermal performance evaluation of bio-bricks and conventional bricks in residential buildings in Aswan city, Egypt. Abd El-Hady RE; Mohamed AFA Sci Rep; 2023 Sep; 13(1):15993. PubMed ID: 37749115 [TBL] [Abstract][Full Text] [Related]
52. Decarbonization potentials of the embodied energy use and operational process in buildings: A review from the life-cycle perspective. Liang Y; Li C; Liu Z; Wang X; Zeng F; Yuan X; Pan Y Heliyon; 2023 Oct; 9(10):e20190. PubMed ID: 37810847 [TBL] [Abstract][Full Text] [Related]
53. Phase change material applications in buildings: an environmental assessment for some Spanish climate severities. Aranda-Usón A; Ferreira G; López-Sabirón AM; Mainar-Toledo MD; Zabalza Bribián I Sci Total Environ; 2013 Feb; 444():16-25. PubMed ID: 23262321 [TBL] [Abstract][Full Text] [Related]
54. Cradle-to-grave life-cycle assessment within the built environment: Comparison between the refurbishment and the complete reconstruction of an office building in Belgium. Marique AF; Rossi B J Environ Manage; 2018 Oct; 224():396-405. PubMed ID: 30064066 [TBL] [Abstract][Full Text] [Related]
55. Punching above its weight: life cycle energy accounting and environmental assessment of vanadium microalloying in reinforcement bar steel. Pradeep Kumar P; Santos DA; Braham EJ; Sellers DG; Banerjee S; Dixit MK Environ Sci Process Impacts; 2021 Mar; 23(2):275-290. PubMed ID: 33355560 [TBL] [Abstract][Full Text] [Related]
56. Environmental impacts, water footprint and cumulative energy demand of match industry in Pakistan. Ullah N; Bano SA; Habiba U; Sabir M; Akhtar A; Ramzan S; Shoukat A; Israr M; Shah S; Nizami SM; Hussain M PLoS One; 2021; 16(5):e0251928. PubMed ID: 34015005 [TBL] [Abstract][Full Text] [Related]
57. Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment). Kim TH; Tae SH Int J Environ Res Public Health; 2016 Nov; 13(11):. PubMed ID: 27827843 [TBL] [Abstract][Full Text] [Related]
58. Influence of construction and demolition waste management on the environmental impact of buildings. Coelho A; de Brito J Waste Manag; 2012 Mar; 32(3):532-41. PubMed ID: 22182407 [TBL] [Abstract][Full Text] [Related]
59. Comparative life cycle assessment of cement, sintered bricks and non-sintered bricks manufacturing using water-based drilling cuttings from shale gas production in the Sichuan Basin, China. Liu W; He D; Geng T; Peng Z; Mou Z; Li M J Environ Manage; 2022 Jul; 314():115135. PubMed ID: 35487056 [TBL] [Abstract][Full Text] [Related]
60. Life Cycle Assessment of Completely Recyclable Concrete. De Schepper M; Van den Heede P; Van Driessche I; De Belie N Materials (Basel); 2014 Aug; 7(8):6010-6027. PubMed ID: 28788174 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]