These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37102130)

  • 1. Learning hybrid locomotion skills-Learn to exploit residual actions and modulate model-based gait control.
    Kasaei M; Abreu M; Lau N; Pereira A; Reis LP; Li Z
    Front Robot AI; 2023; 10():1004490. PubMed ID: 37102130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generic Neural Locomotion Control Framework for Legged Robots.
    Thor M; Kulvicius T; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4013-4025. PubMed ID: 32833657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Bipedal Locomotion Based on Reinforcement Learning and Heuristics.
    Wang Z; Wei W; Xie A; Zhang Y; Wu J; Zhu Q
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Reinforcement Learning with Gait Mode Specification for Quadrupedal Trot-Gallop Energetic Analysis.
    Chai J; Owaki D; Hayashibe M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4583-4587. PubMed ID: 34892236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LORM: a novel reinforcement learning framework for biped gait control.
    Zhang W; Jiang Y; Farrukh FUD; Zhang C; Zhang D; Wang G
    PeerJ Comput Sci; 2022; 8():e927. PubMed ID: 35494792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Omnidirectional Walking Pattern Generator Combining Virtual Constraints and Preview Control for Humanoid Robots.
    Ruscelli F; Laurenzi A; Mingo Hoffman E; Tsagarakis NG
    Front Robot AI; 2021; 8():660004. PubMed ID: 34277715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-expert synthesis for versatile locomotion and manipulation skills.
    Yuan K; Li Z
    Front Robot AI; 2022; 9():970890. PubMed ID: 36246489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-expert learning of adaptive legged locomotion.
    Yang C; Yuan K; Zhu Q; Yu W; Li Z
    Sci Robot; 2020 Dec; 5(49):. PubMed ID: 33298515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal bipedal locomotion generation with passive dynamics
    Koseki S; Kutsuzawa K; Owaki D; Hayashibe M
    Front Neurorobot; 2022; 16():1054239. PubMed ID: 36756534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of repeated waist-pull perturbations on gait stability in subjects with cerebellar ataxia.
    Aprigliano F; Martelli D; Kang J; Kuo SH; Kang UJ; Monaco V; Micera S; Agrawal SK
    J Neuroeng Rehabil; 2019 Apr; 16(1):50. PubMed ID: 30975168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning agile and dynamic motor skills for legged robots.
    Hwangbo J; Lee J; Dosovitskiy A; Bellicoso D; Tsounis V; Koltun V; Hutter M
    Sci Robot; 2019 Jan; 4(26):. PubMed ID: 33137755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint elasticity produces energy efficiency in underwater locomotion: Verification with deep reinforcement learning.
    Zheng C; Li G; Hayashibe M
    Front Robot AI; 2022; 9():957931. PubMed ID: 36158602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust and reusable self-organized locomotion of legged robots under adaptive physical and neural communications.
    Sun T; Dai Z; Manoonpong P
    Front Neural Circuits; 2023; 17():1111285. PubMed ID: 37063383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots.
    Miguel-Blanco A; Manoonpong P
    Front Neural Circuits; 2020; 14():46. PubMed ID: 32973461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simple Yet Effective Whole-Body Locomotion Framework for Quadruped Robots.
    Raiola G; Mingo Hoffman E; Focchi M; Tsagarakis N; Semini C
    Front Robot AI; 2020; 7():528473. PubMed ID: 33501304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Stability Training Method of Legged Robots Based on Training Platforms and Reinforcement Learning with Its Simulation and Experiment.
    Wu W; Gao L; Zhang X
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.