These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37102152)
21. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation. Zhang L; Loh KC; Dai Y; Tong YW Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405 [TBL] [Abstract][Full Text] [Related]
22. Synergy of selective buffering, intermittent pH control and bioreactor configuration on acidogenic volatile fatty acid production from food waste. Dahiya S; Venkata Mohan S Chemosphere; 2022 Sep; 302():134755. PubMed ID: 35490753 [TBL] [Abstract][Full Text] [Related]
23. Critical factors influence on acidogenesis towards volatile fatty acid, biohydrogen and methane production from the molasses-spent wash. Vanitha TK; Dahiya S; Lingam Y; Venkata Mohan S Bioresour Technol; 2022 Sep; 360():127446. PubMed ID: 35690240 [TBL] [Abstract][Full Text] [Related]
24. Recovery of high-concentration volatile fatty acids from wastewater using an acidogenesis-electrodialysis integrated system. Pan XR; Li WW; Huang L; Liu HQ; Wang YK; Geng YK; Kwan-Sing Lam P; Yu HQ Bioresour Technol; 2018 Jul; 260():61-67. PubMed ID: 29614452 [TBL] [Abstract][Full Text] [Related]
25. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Zhou M; Yan B; Wong JWC; Zhang Y Bioresour Technol; 2018 Jan; 248(Pt A):68-78. PubMed ID: 28693950 [TBL] [Abstract][Full Text] [Related]
26. Effects of organic loading rate on hydrogen and volatile fatty acid production and microbial community during acidogenic hydrogenesis in a continuous stirred tank reactor using molasses wastewater. Yun J; Cho KS J Appl Microbiol; 2016 Dec; 121(6):1627-1636. PubMed ID: 27709740 [TBL] [Abstract][Full Text] [Related]
27. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling. Amulya K; Jukuri S; Venkata Mohan S Bioresour Technol; 2015; 188():231-9. PubMed ID: 25682477 [TBL] [Abstract][Full Text] [Related]
28. Effects of temperature and total solid content on biohydrogen production from dark fermentation of rice straw: Performance and microbial community characteristics. Chen H; Wu J; Huang R; Zhang W; He W; Deng Z; Han Y; Xiao B; Luo H; Qu W Chemosphere; 2022 Jan; 286(Pt 1):131655. PubMed ID: 34315083 [TBL] [Abstract][Full Text] [Related]
29. Novel insight into the relationship between organic substrate composition and volatile fatty acids distribution in acidogenic co-fermentation. Ma H; Liu H; Zhang L; Yang M; Fu B; Liu H Biotechnol Biofuels; 2017; 10():137. PubMed ID: 28559928 [TBL] [Abstract][Full Text] [Related]
30. Valorization of agro-industrial wastes to produce volatile fatty acids: combined effect of substrate/inoculum ratio and initial alkalinity. Iglesias-Iglesias R; Fernandez-Feal MMDC; Kennes C; Veiga MC Environ Technol; 2021 Nov; 42(25):3889-3899. PubMed ID: 32167848 [No Abstract] [Full Text] [Related]
31. Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation. Li RH; Li XY Bioresour Technol; 2017 Dec; 245(Pt A):615-624. PubMed ID: 28910649 [TBL] [Abstract][Full Text] [Related]
32. Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum. Yin J; Yu X; Zhang Y; Shen D; Wang M; Long Y; Chen T Bioresour Technol; 2016 Sep; 216():996-1003. PubMed ID: 27343452 [TBL] [Abstract][Full Text] [Related]
33. The role of methanogens in acetic acid production under different salinity conditions. Xiao K; Guo C; Maspolim Y; Zhou Y; Ng WJ Chemosphere; 2016 Oct; 161():53-60. PubMed ID: 27421101 [TBL] [Abstract][Full Text] [Related]
34. Achieving valorization of fermented activated sludge using pretreated waste wood feedstock for volatile fatty acids accumulation. Li D; Yin F; Ma X Bioresour Technol; 2019 Oct; 290():121791. PubMed ID: 31323509 [TBL] [Abstract][Full Text] [Related]
35. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids. Lin L; Li XY Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135 [TBL] [Abstract][Full Text] [Related]
36. Electrochemical pretreatment enhancing co-fermentation of waste activated sludge and food waste into volatile fatty acids: Performance, microbial community dynamics and metabolism. Lin Q; Dong X; Luo J; Zeng Q; Ma J; Wang Z; Chen G; Guo G Bioresour Technol; 2022 Oct; 361():127736. PubMed ID: 35932947 [TBL] [Abstract][Full Text] [Related]
37. Production of polyhydroxyalkanoates (PHAs) by Vu DH; Wainaina S; Taherzadeh MJ; Åkesson D; Ferreira JA Bioengineered; 2021 Dec; 12(1):2480-2498. PubMed ID: 34115556 [TBL] [Abstract][Full Text] [Related]
38. Metagenomic insight of fluorene-boosted sludge acidogenic fermentation: Metabolic transformation of amino acids and monosaccharides. Zhou X; Liu T; Zhang S; Kang B; Duan X; Yan Y; Feng L; Chen Y Sci Total Environ; 2023 Mar; 865():161122. PubMed ID: 36587690 [TBL] [Abstract][Full Text] [Related]
39. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia. Reddy MV; Mohan SV Bioresour Technol; 2012 Jan; 103(1):313-21. PubMed ID: 22055090 [TBL] [Abstract][Full Text] [Related]
40. Relative effect of different inorganic acids on selective enrichment of acidogenic biocatalyst for fermentative biohydrogen production from wastewater. Sarkar O; Kannaiah Goud R; Venkata Subhash G; Venkata Mohan S Bioresour Technol; 2013 Nov; 147():321-331. PubMed ID: 24001561 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]