These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37102302)

  • 1. TP53 and RB1 alterations characterize poor prognostic subgroups in pediatric acute myeloid leukemia.
    Hara Y; Shiba N; Yoshida K; Yamato G; Kaburagi T; Shiraishi Y; Ohki K; Shiozawa Y; Kawamura M; Kawasaki H; Sotomatsu M; Takizawa T; Matsuo H; Shimada A; Kiyokawa N; Tomizawa D; Taga T; Ito E; Horibe K; Miyano S; Adachi S; Taki T; Ogawa S; Hayashi Y
    Genes Chromosomes Cancer; 2023 Jul; 62(7):412-422. PubMed ID: 37102302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RB1 and TP53 co-mutations correlate strongly with genomic biomarkers of response to immunity checkpoint inhibitors in urothelial bladder cancer.
    Manzano RG; Catalan-Latorre A; Brugarolas A
    BMC Cancer; 2021 Apr; 21(1):432. PubMed ID: 33879103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent RB1 and TP53 Alterations Define a Subset of EGFR-Mutant Lung Cancers at risk for Histologic Transformation and Inferior Clinical Outcomes.
    Offin M; Chan JM; Tenet M; Rizvi HA; Shen R; Riely GJ; Rekhtman N; Daneshbod Y; Quintanal-Villalonga A; Penson A; Hellmann MD; Arcila ME; Ladanyi M; Pe'er D; Kris MG; Rudin CM; Yu HA
    J Thorac Oncol; 2019 Oct; 14(10):1784-1793. PubMed ID: 31228622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compound Genomic Alterations of TP53, PTEN, and RB1 Tumor Suppressors in Localized and Metastatic Prostate Cancer.
    Hamid AA; Gray KP; Shaw G; MacConaill LE; Evan C; Bernard B; Loda M; Corcoran NM; Van Allen EM; Choudhury AD; Sweeney CJ
    Eur Urol; 2019 Jul; 76(1):89-97. PubMed ID: 30553611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HPV51-associated Leiomyosarcoma: A Novel Class of TP53/RB1-Wildtype Tumor With Predilection for the Female Lower Reproductive Tract.
    Williams EA; Montesion M; Lincoln V; Tse JY; Hiemenz MC; Mata DA; Shah BB; Shoroye A; Alexander BM; Werth AJ; Foley-Peres K; Milante RR; Ross JS; Ramkissoon SH; Williams KJ; Adhikari LJ; Zuna RE; LeBoit PE; Lin DI; Elvin JA
    Am J Surg Pathol; 2022 Jun; 46(6):729-741. PubMed ID: 35034043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational landscape and clinical outcome of pediatric acute myeloid leukemia with 11q23/KMT2A rearrangements.
    Yuen KY; Liu Y; Zhou YZ; Wang Y; Zhou DH; Fang JP; Xu LH
    Cancer Med; 2023 Jan; 12(2):1418-1430. PubMed ID: 35833755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CSF3R Mutations are frequently associated with abnormalities of RUNX1, CBFB, CEBPA, and NPM1 genes in acute myeloid leukemia.
    Zhang Y; Wang F; Chen X; Zhang Y; Wang M; Liu H; Cao P; Ma X; Wang T; Zhang J; Zhang X; Lu P; Liu H
    Cancer; 2018 Aug; 124(16):3329-3338. PubMed ID: 29932212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of ASXL1 and TP53 mutations in the molecular classification and prognosis of acute myeloid leukemias with myelodysplasia-related changes.
    Devillier R; Mansat-De Mas V; Gelsi-Boyer V; Demur C; Murati A; Corre J; Prebet T; Bertoli S; Brecqueville M; Arnoulet C; Recher C; Vey N; Mozziconacci MJ; Delabesse E; Birnbaum D
    Oncotarget; 2015 Apr; 6(10):8388-96. PubMed ID: 25860933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic profiling-based prognostic prediction of patients with advanced small-cell lung cancer in large scale analysis.
    Udagawa H; Umemura S; Murakami I; Mimaki S; Makinoshima H; Ishii G; Miyoshi T; Kirita K; Matsumoto S; Yoh K; Niho S; Tsuchihara K; Goto K
    Lung Cancer; 2018 Dec; 126():182-188. PubMed ID: 30527185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of tumor protein p53 mutation-based prognostic signatures for acute myeloid leukemia.
    Xie J; Chen K; Han H; Dong Q; Wang W
    Curr Res Transl Med; 2022 Sep; 70(4):103347. PubMed ID: 35483237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Clinical and prognostic values of TP53 mutation in patients with acute myeloid leukemia].
    Zhang Y; Hu XX; Gao L; Ni X; Chen J; Chen L; Zhang WP; Yang JM; Wang JM
    Zhonghua Xue Ye Xue Za Zhi; 2019 Nov; 40(11):932-938. PubMed ID: 31856443
    [No Abstract]   [Full Text] [Related]  

  • 12. TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution.
    Hou HA; Chou WC; Kuo YY; Liu CY; Lin LI; Tseng MH; Chiang YC; Liu MC; Liu CW; Tang JL; Yao M; Li CC; Huang SY; Ko BS; Hsu SC; Chen CY; Lin CT; Wu SJ; Tsay W; Chen YC; Tien HF
    Blood Cancer J; 2015 Jul; 5(7):e331. PubMed ID: 26230955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations.
    Bousquet M; Noirot C; Accadbled F; Sales de Gauzy J; Castex MP; Brousset P; Gomez-Brouchet A
    Ann Oncol; 2016 Apr; 27(4):738-44. PubMed ID: 26787232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel 85-Gene Expression Signature Predicts Unfavorable Prognosis in Acute Myeloid Leukemia.
    Lai Y; Sheng L; Wang J; Zhou M; OuYang G
    Technol Cancer Res Treat; 2021; 20():15330338211004933. PubMed ID: 33784904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High PRDM16 expression identifies a prognostic subgroup of pediatric acute myeloid leukaemia correlated to FLT3-ITD, KMT2A-PTD, and NUP98-NSD1: the results of the Japanese Paediatric Leukaemia/Lymphoma Study Group AML-05 trial.
    Shiba N; Ohki K; Kobayashi T; Hara Y; Yamato G; Tanoshima R; Ichikawa H; Tomizawa D; Park MJ; Shimada A; Sotomatsu M; Arakawa H; Horibe K; Adachi S; Taga T; Tawa A; Hayashi Y
    Br J Haematol; 2016 Feb; 172(4):581-91. PubMed ID: 26684393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivating Mutations of RB1 and TP53 Correlate With Sarcomatous Histomorphology and Metastasis/Recurrence in Gastrointestinal Stromal Tumors.
    Merten L; Agaimy A; Moskalev EA; Giedl J; Kayser C; Geddert H; Schaefer IM; Cameron S; Werner M; Ströbel P; Hartmann A; Haller F
    Am J Clin Pathol; 2016 Dec; 146(6):718-726. PubMed ID: 28028119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CXCR4 Overexpression is a Poor Prognostic Factor in Pediatric Acute Myeloid Leukemia With Low Risk: A Report From the Japanese Pediatric Leukemia/Lymphoma Study Group.
    Matsuo H; Nakamura N; Tomizawa D; Saito AM; Kiyokawa N; Horibe K; Nishinaka-Arai Y; Tokumasu M; Itoh H; Kamikubo Y; Nakayama H; Kinoshita A; Taga T; Tawa A; Taki T; Tanaka S; Adachi S
    Pediatr Blood Cancer; 2016 Aug; 63(8):1394-9. PubMed ID: 27135782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of KMT2A Rearrangement and CSPG4 Expression in Pediatric Acute Myeloid Leukemia.
    Hoffmeister LM; Orhan E; Walter C; Niktoreh N; Hanenberg H; von Neuhoff N; Reinhardt D; Schneider M
    Cancers (Basel); 2021 Sep; 13(19):. PubMed ID: 34638301
    [No Abstract]   [Full Text] [Related]  

  • 19. Clinical and Biological Implications of Mutational Spectrum in Acute Myeloid Leukemia of FAB Subtypes M0 and M1.
    Cheng Z; Dai Y; Pang Y; Jiao Y; Zhao H; Wu S; Zhang L; Zhang Y; Wang X; Wang L; Ma D; Qin T; Hu N; Zhang Y; Hu K; Zhang Q; Shi J; Fu L
    Cell Physiol Biochem; 2018; 47(5):1853-1861. PubMed ID: 29961066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The prognostic impact of cigarette smoking on survival in acute myeloid leukemia with TP53 mutations and/or 17p deletions.
    Bi X; French Z; Palmisiano N; Wen KY; Wilde L
    Ann Hematol; 2022 Jun; 101(6):1251-1259. PubMed ID: 35288759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.