These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37102342)

  • 21. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching.
    Li L; Bian Y; Zhang X; Guan Y; Fan E; Wu F; Chen R
    Waste Manag; 2018 Jan; 71():362-371. PubMed ID: 29110940
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries.
    Yang Y; Lei S; Song S; Sun W; Wang L
    Waste Manag; 2020 Feb; 102():131-138. PubMed ID: 31677520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regeneration and characterization of LiNi
    Wang Y; Ma L; Xi X; Nie Z; Zhang Y; Wen X; Lyu Z
    Waste Manag; 2019 Jul; 95():192-200. PubMed ID: 31351604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recycling of LiFePO
    Chen X; Li S; Wang Y; Jiang Y; Tan X; Han W; Wang S
    Waste Manag; 2021 Dec; 136():67-75. PubMed ID: 34637980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pyrolysis and physical separation for the recovery of spent LiFePO
    Zhong X; Liu W; Han J; Jiao F; Qin W; Liu T; Zhao C
    Waste Manag; 2019 Apr; 89():83-93. PubMed ID: 31079762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environment-friendly, efficient process for mechanical recovery of waste lithium iron phosphate batteries.
    Bai Y; Zhu H; Zu L; Zhang Y; Bi H
    Waste Manag Res; 2023 Oct; 41(10):1549-1558. PubMed ID: 37070218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries.
    Li L; Ge J; Chen R; Wu F; Chen S; Zhang X
    Waste Manag; 2010 Dec; 30(12):2615-21. PubMed ID: 20817431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ferrioxalate photolysis-assisted green recovery of valuable resources from spent lithium iron phosphate batteries.
    Hua Y; Zhang Z
    Waste Manag; 2024 Jun; 183():199-208. PubMed ID: 38761484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient separation of aluminum foil from mixed-type spent lithium-ion power batteries.
    Hu Z; Zhu N; Wei X; Zhang S; Li F; Wu P; Chen Y
    J Environ Manage; 2021 Nov; 298():113500. PubMed ID: 34388548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical recycling of cell phone Li-ion batteries: Application in environmental remediation.
    Gonçalves MC; Garcia EM; Taroco HA; Gorgulho HF; Melo JO; Silva RR; Souza AG
    Waste Manag; 2015 Jun; 40():144-50. PubMed ID: 25728092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids - A review.
    Meshram P; Mishra A; Abhilash ; Sahu R
    Chemosphere; 2020 Mar; 242():125291. PubMed ID: 31896181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recycling of LiNi
    Meng X; Hao J; Cao H; Lin X; Ning P; Zheng X; Chang J; Zhang X; Wang B; Sun Z
    Waste Manag; 2019 Feb; 84():54-63. PubMed ID: 30691913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical-Free Recycling of Cathode Material and Aluminum Foil from Waste Lithium-Ion Batteries by Combining Plasma and Ultrasonic Technology.
    Chen Q; Guo Y; Lai X; Han X; Liu X; Lu L; Ouyang M; Zheng Y
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):31076-31084. PubMed ID: 38848221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A sustainable approach for selective recovery of lithium from cathode materials of spent lithium-ion batteries by induced phase transition.
    Rao F; Sun Z; Lv W; Zhang X; Guan J; Zheng X
    Waste Manag; 2023 Feb; 156():247-254. PubMed ID: 36502638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; He S; Gao Y; Peng J
    Waste Manag Res; 2019 Aug; 37(8):767-780. PubMed ID: 31218930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-temperature thermal pretreatment process for recycling inner core of spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Peng J; Li H
    Waste Manag Res; 2021 Jan; 39(1):146-155. PubMed ID: 32938335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A combined recovery process of metals in spent lithium-ion batteries.
    Li J; Shi P; Wang Z; Chen Y; Chang CC
    Chemosphere; 2009 Nov; 77(8):1132-6. PubMed ID: 19775724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A green and effective room-temperature recycling process of LiFePO
    Li L; Bian Y; Zhang X; Yao Y; Xue Q; Fan E; Wu F; Chen R
    Waste Manag; 2019 Feb; 85():437-444. PubMed ID: 30803599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applicability of the reduction smelting recycling process to different types of spent lithium-ion batteries cathode materials.
    Qu G; Yang J; Wang H; Ran Y; Li B; Wei Y
    Waste Manag; 2023 Jul; 166():222-232. PubMed ID: 37196388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.