BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37102364)

  • 1. Impacts of hydrodynamic conditions and microscale surface roughness on the critical shear stress to develop and thickness of early-stage Pseudomonas putida biofilms.
    Wei G; Yang JQ
    Biotechnol Bioeng; 2023 Jul; 120(7):1797-1808. PubMed ID: 37102364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Changes in Biofilm Structures under Dynamic Flow Conditions.
    Wang S; Zhu H; Zheng G; Dong F; Liu C
    Appl Environ Microbiol; 2022 Nov; 88(22):e0107222. PubMed ID: 36300948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms.
    Shen Y; Monroy GL; Derlon N; Janjaroen D; Huang C; Morgenroth E; Boppart SA; Ashbolt NJ; Liu WT; Nguyen TH
    Environ Sci Technol; 2015 Apr; 49(7):4274-82. PubMed ID: 25699403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic investigation of the impacts of flow fluctuations on the development of Pseudomonas putida biofilms.
    Wei G; Yang JQ
    NPJ Biofilms Microbiomes; 2023 Oct; 9(1):73. PubMed ID: 37789000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.
    Mathieu L; Bertrand I; Abe Y; Angel E; Block JC; Skali-Lami S; Francius G
    Water Res; 2014 May; 55():175-84. PubMed ID: 24607313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of flow hydrodynamics and pipe material properties on biofilm development within drinking water systems.
    Cowle MW; Webster G; Babatunde AO; Bockelmann-Evans BN; Weightman AJ
    Environ Technol; 2020 Dec; 41(28):3732-3744. PubMed ID: 31120377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of toxicity of silver nanoparticles on Pseudomonas putida biofilm structure.
    Thuptimdang P; Limpiyakorn T; Khan E
    Chemosphere; 2017 Dec; 188():199-207. PubMed ID: 28886554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the effects of aerodynamic and hydrodynamic shear forces on Pseudomonas aeruginosa biofilm growth.
    Zhang Y; Silva DM; Young P; Traini D; Li M; Ong HX; Cheng S
    Biotechnol Bioeng; 2022 Jun; 119(6):1483-1497. PubMed ID: 35274289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic Effects on Biofilms at the Biointerface Using a Microfluidic Electrochemical Cell: Case Study of Pseudomonas sp.
    Zarabadi MP; Paquet-Mercier F; Charette SJ; Greener J
    Langmuir; 2017 Feb; 33(8):2041-2049. PubMed ID: 28147485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear-induced detachment of biofilms from hollow fiber silicone membranes.
    Huang Z; McLamore ES; Chuang HS; Zhang W; Wereley S; Leon JL; Banks MK
    Biotechnol Bioeng; 2013 Feb; 110(2):525-34. PubMed ID: 22886926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudomonas putida biofilm dynamics following a single pulse of silver nanoparticles.
    Mallevre F; Fernandes TF; Aspray TJ
    Chemosphere; 2016 Jun; 153():356-64. PubMed ID: 27031799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between composite roughness and Streptococcus mutans biofilm depth under shear in vitro.
    O'Brien EP; Mondal K; Chen CC; Hanley L; Drummond JL; Rockne KJ
    J Dent; 2023 Jul; 134():104535. PubMed ID: 37156358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudomonas putida as a potential biocontrol agent against Salmonella Java biofilm formation in the drinking water system of broiler houses.
    Maes S; De Reu K; Van Weyenberg S; Lories B; Heyndrickx M; Steenackers H
    BMC Microbiol; 2020 Dec; 20(1):373. PubMed ID: 33308162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population dynamics of a dual
    Gazzola G; Habimana O; Quinn L; Casey E; Murphy CD
    Biofouling; 2019 Mar; 35(3):299-307. PubMed ID: 31025575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of chlorination and hydrodynamic shear stress on the persistence of bacteriophages associated with drinking water biofilms.
    Pelleieux S; Mathieu L; Block JC; Gantzer C; Bertrand I
    J Appl Microbiol; 2016 Oct; 121(4):1189-97. PubMed ID: 27452787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hydrodynamics on the transformation of nitrogen in river water by regulating the mass transfer performance of dissolved oxygen in biofilm.
    Pan M; Li H; Han X; Quan G; Ma W; Guo Q; Li X; Yang B; Ding C; Chen Y; Yun T; Qin J; Jiang S
    Chemosphere; 2023 Jan; 312(Pt 1):137013. PubMed ID: 36397302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cohesiveness and hydrodynamic properties of young drinking water biofilms.
    Abe Y; Skali-Lami S; Block JC; Francius G
    Water Res; 2012 Mar; 46(4):1155-66. PubMed ID: 22221338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions.
    Zhang W; Sileika TS; Chen C; Liu Y; Lee J; Packman AI
    Biotechnol Bioeng; 2011 Nov; 108(11):2571-82. PubMed ID: 21656713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of Pseudomonas putida biofilms in an upscale experimental framework.
    Espeso DR; Martínez-García E; Carpio A; de Lorenzo V
    J Ind Microbiol Biotechnol; 2018 Oct; 45(10):899-911. PubMed ID: 30132198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The limitations of hydrodynamic removal of biofilms from the dead-ends in a model drinking water distribution system.
    Simunič U; Pipp P; Dular M; Stopar D
    Water Res; 2020 Jul; 178():115838. PubMed ID: 32361344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.