BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37102364)

  • 21. Effect of shear stress and growth conditions on detachment and physical properties of biofilms.
    Paul E; Ochoa JC; Pechaud Y; Liu Y; Liné A
    Water Res; 2012 Nov; 46(17):5499-5508. PubMed ID: 22898671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrodynamic effects on bacterial biofilm development in a microfluidic environment.
    Kim J; Kim HS; Han S; Lee JY; Oh JE; Chung S; Park HD
    Lab Chip; 2013 May; 13(10):1846-9. PubMed ID: 23576069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Can the carbon metabolic activity of biofilm be regulated by the hydrodynamic conditions in urban rivers?
    Hou J; Shao G; Adyel TM; Li C; Liu Z; Liu S; Miao L
    Sci Total Environ; 2022 Aug; 832():155082. PubMed ID: 35398435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.
    Teodósio JS; Simões M; Melo LF; Mergulhão FJ
    Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early biofilm and streamer formation is mediated by wall shear stress and surface wettability: A multifactorial microfluidic study.
    Chun ALM; Mosayyebi A; Butt A; Carugo D; Salta M
    Microbiologyopen; 2022 Aug; 11(4):e1310. PubMed ID: 36031954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Selection of Platforms to Evaluate Surface Adhesion and Biofilm Formation in Controlled Hydrodynamic Conditions.
    Gomes LC; Mergulhão FJM
    Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope.
    Larimer C; Suter JD; Bonheyo G; Addleman RS
    J Biophotonics; 2016 Jun; 9(6):656-66. PubMed ID: 26992071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational and Experimental Investigation of Biofilm Disruption Dynamics Induced by High-Velocity Gas Jet Impingement.
    Prades L; Fabbri S; Dorado AD; Gamisans X; Stoodley P; Picioreanu C
    mBio; 2020 Jan; 11(1):. PubMed ID: 31911489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Critical hydrodynamic force levels for efficient removal of oral biofilms in simulated interdental spaces.
    Hotic M; Ackermann M; Bopp J; Hofmann N; Karygianni L; Paqué PN
    Clin Oral Investig; 2024 May; 28(6):346. PubMed ID: 38819592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the flow behavior around marine biofilms.
    Romeu MJ; Miranda JM; de Jong ED; Morais J; Vasconcelos V; Sjollema J; Mergulhão FJ
    Biofilm; 2024 Jun; 7():100204. PubMed ID: 38948680
    [No Abstract]   [Full Text] [Related]  

  • 31. Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors.
    Karande R; Halan B; Schmid A; Buehler K
    Biotechnol Bioeng; 2014 Sep; 111(9):1831-40. PubMed ID: 24729096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of biomass detachment from biofilms of two different Pseudomonas spp. under constant shear conditions.
    Gazzola G; Habimana O; Murphy CD; Casey E
    Biofouling; 2015; 31(1):13-8. PubMed ID: 25563340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupled CFD-DEM modeling to predict how EPS affects bacterial biofilm deformation, recovery and detachment under flow conditions.
    Xia Y; Jayathilake PG; Li B; Zuliani P; Deehan D; Longyear J; Stoodley P; Chen J
    Biotechnol Bioeng; 2022 Sep; 119(9):2551-2563. PubMed ID: 35610631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing.
    Thomen P; Robert J; Monmeyran A; Bitbol AF; Douarche C; Henry N
    PLoS One; 2017; 12(4):e0175197. PubMed ID: 28403171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Turbulence accelerates the growth of drinking water biofilms.
    Tsagkari E; Sloan WT
    Bioprocess Biosyst Eng; 2018 Jun; 41(6):757-770. PubMed ID: 29428998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The control of biofilm formation by hydrodynamics of purified water in industrial distribution system.
    Florjanič M; Kristl J
    Int J Pharm; 2011 Feb; 405(1-2):16-22. PubMed ID: 21129467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of biomimetic surfaces to reduce single- and dual-species biofilms of
    Teixeira-Santos R; Azevedo A; Romeu MJ; Amador CI; Gomes LC; Whitehead KA; Sjollema J; Burmølle M; Mergulhão FJ
    Biofilm; 2024 Jun; 7():100185. PubMed ID: 38444517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boundary layer hydrodynamics of patchy biofilms.
    Murphy EAK; Barros JM; Schultz MP; Flack KA; Steppe CN; Reidenbach MA
    Biofouling; 2022 Aug; 38(7):696-714. PubMed ID: 36062568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Behavior of Listeria monocytogenes in a Pseudomonas putida biofilm on a condensate-forming surface.
    Hassan AN; Birt DM; Frank JF
    J Food Prot; 2004 Feb; 67(2):322-7. PubMed ID: 14968965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macroscale versus microscale methods for physiological analysis of biofilms formed in 96-well microtiter plates.
    Gomes LC; Moreira JM; Miranda JM; Simões M; Melo LF; Mergulhão FJ
    J Microbiol Methods; 2013 Dec; 95(3):342-9. PubMed ID: 24140575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.