These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37102443)

  • 1. Nature of the physicochemical process in water photolysis uncovered by a computer simulation.
    Kai T; Toigawa T; Ukai M; Fujii K; Watanabe R; Yokoya A
    J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37102443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles simulation of an ejected electron produced by monochromatic deposition energy to water at the femtosecond order.
    Kai T; Toigawa T; Matsuya Y; Hirata Y; Tezuka T; Tsuchida H; Yokoya A
    RSC Adv; 2023 Oct; 13(46):32371-32380. PubMed ID: 37928859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deceleration processes of secondary electrons produced by a high-energy Auger electron in a biological context.
    Kai T; Yokoya A; Ukai M; Fujii K; Watanabe R
    Int J Radiat Biol; 2016 Nov; 92(11):654-659. PubMed ID: 27332896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial yield of hydrated electron production from water radiolysis based on first-principles calculation.
    Kai T; Toigawa T; Matsuya Y; Hirata Y; Tezuka T; Tsuchida H; Yokoya A
    RSC Adv; 2023 Mar; 13(11):7076-7086. PubMed ID: 36875880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules.
    Boamah MD; Sullivan KK; Shulenberger KE; Soe CM; Jacob LM; Yhee FC; Atkinson KE; Boyer MC; Haines DR; Arumainayagam CR
    Faraday Discuss; 2014; 168():249-66. PubMed ID: 25302384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-aided stochastic modeling of the radiolysis of liquid water.
    Michalik V; Begusová M; Bigildeev EA
    Radiat Res; 1998 Mar; 149(3):224-36. PubMed ID: 9496885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study on the solvent dependent heme cooling following ligand photolysis in carbonmonoxy myoglobin.
    Zhang Y; Fujisaki H; Straub JE
    J Phys Chem B; 2007 Mar; 111(12):3243-50. PubMed ID: 17388441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of the passage of fast electrons and the early stage of water radiolysis by the Monte Carlo method.
    Kaplan IG; Sukhonosov VYa
    Radiat Res; 1991 Jul; 127(1):1-10. PubMed ID: 2068265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermalization of subexcitation electrons in solid water.
    Goulet T; Jay-Gerin JP
    Radiat Res; 1989 Apr; 118(1):46-62. PubMed ID: 2704791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic aspects and uncertainties in the prechemical and chemical stages of electron tracks in liquid water: a quantitative analysis based on Monte Carlo simulations.
    Ballarini F; Biaggi M; Merzagora M; Ottolenghi A; Dingfelder M; Friedland W; Jacob P; Paretzke HG
    Radiat Environ Biophys; 2000 Sep; 39(3):179-88. PubMed ID: 11095148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational coherence in polar solutions of Zn(II) tetrakis(N-methylpyridyl)porphyrin with Soret-band excitation: rapidly damped intermolecular modes with clustered solvent molecules and slowly damped intramolecular modes from the porphyrin macrocycle.
    Dillman KL; Shelly KR; Beck WF
    J Phys Chem B; 2009 Apr; 113(17):6127-39. PubMed ID: 19348449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-electron reduction of 2-aminopurine in the aqueous phase. A DFT and pulse radiolysis study.
    Reynisson J; Steenken S
    Phys Chem Chem Phys; 2005 Feb; 7(4):659-65. PubMed ID: 19787883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation and investigation of reactive species yields of Geant4-DNA chemistry models.
    Peukert D; Incerti S; Kempson I; Douglass M; Karamitros M; Baldacchino G; Bezak E
    Med Phys; 2019 Feb; 46(2):983-998. PubMed ID: 30536689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of atrazine by photolysis and radiolysis: kinetic parameters, intermediates and economic consideration.
    Rózsa G; Fazekas Á; Náfrádi M; Alapi T; Schrantz K; Takács E; Wojnárovits L; Fath A; Oppenländer T
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23268-23278. PubMed ID: 31197664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations.
    Minakata D; Coscarelli E
    Molecules; 2018 Feb; 23(3):. PubMed ID: 29495565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of water radiolysis for low-energy charged particles.
    Uehara S; Nikjoo H
    J Radiat Res; 2006 Mar; 47(1):69-81. PubMed ID: 16571920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Dynamics of Liquid Water: Energy Relaxation and Transfer Processes of the OH Stretch and the HOH Bend.
    Imoto S; Xantheas SS; Saito S
    J Phys Chem B; 2015 Aug; 119(34):11068-78. PubMed ID: 26042611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time- and space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation.
    Kreipl MS; Friedland W; Paretzke HG
    Radiat Environ Biophys; 2009 Feb; 48(1):11-20. PubMed ID: 18949480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.