These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37102708)

  • 1. A Geometric Model of Ultrasound Backscatter to Describe Microstructural Anisotropy of Tissue.
    Santoso AP; Rosado-Mendez I; Guerrero QW; Hall TJ
    Ultrason Imaging; 2023 Jul; 45(4):206-214. PubMed ID: 37102708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying Backscatter Anisotropy Using the Reference Phantom Method.
    Guerrero QW; Rosado-Mendez IM; Drehfal LC; Feltovich H; Hall TJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jul; 64(7):1063-1077. PubMed ID: 28463191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations.
    Liu W; Zagzebski JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):340-52. PubMed ID: 20178900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms.
    Anderson JJ; Herd MT; King MR; Haak A; Hafez ZT; Song J; Oelze ML; Madsen EL; Zagzebski JA; O'Brien WD; Hall TJ
    Ultrason Imaging; 2010 Jan; 32(1):48-64. PubMed ID: 20690431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of anisotropic myocardial backscatter using spectral slope, intercept and midband fit parameters.
    Yang M; Krueger TM; Miller JG; Holland MR
    Ultrason Imaging; 2007 Apr; 29(2):122-34. PubMed ID: 17679326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue.
    Rose JH; Kaufmann MR; Wickline SA; Hall CS; Miller JG
    J Acoust Soc Am; 1995 Jan; 97(1):656-68. PubMed ID: 7860840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Ultrasound: Scattering Theory.
    Oelze M
    Adv Exp Med Biol; 2023; 1403():19-28. PubMed ID: 37495912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying acoustic scattering sources in normal renal parenchyma from the anisotropy in acoustic properties.
    Insana MF; Hall TJ; Fishback JL
    Ultrasound Med Biol; 1991; 17(6):613-26. PubMed ID: 1962364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of ultrasound attenuation and backscatter estimates in layered tissue-mimicking phantoms among three clinical scanners.
    Nam K; Rosado-Mendez IM; Wirtzfeld LA; Ghoshal G; Pawlicki AD; Madsen EL; Lavarello RJ; Oelze ML; Zagzebski JA; O'Brien WD; Hall TJ
    Ultrason Imaging; 2012 Oct; 34(4):209-21. PubMed ID: 23160474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of dependence of backscatter coefficient from cylinders on frequency and diameter using focused transducers--with applications in trabecular bone.
    Wear KA
    J Acoust Soc Am; 2004 Jan; 115(1):66-72. PubMed ID: 14758996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer.
    Liu W; Zagzebski JA; Hall TJ; Madsen EL; Varghese T; Kliewer MA; Panda S; Lowery C; Barnes S
    Phys Med Biol; 2008 Aug; 53(15):4169-83. PubMed ID: 18635893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative ultrasound estimates from populations of scatterers with continuous size distributions.
    Lavarello R; Oelze M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):744-53. PubMed ID: 21507752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective scatterer diameter estimates for broad scatterer size distributions.
    Nordberg EP; Hall TJ
    Ultrason Imaging; 2015 Jan; 37(1):3-21. PubMed ID: 24831300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative ultrasound estimates from populations of scatterers with continuous size distributions: effects of the size estimator algorithm.
    Lavarello R; Oelze M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Sep; 59(9):2066-76. PubMed ID: 23007782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of differences in backscatter coefficients among four ultrasound scanners with different beamforming methods.
    Omura M; Hasegawa H; Nagaoka R; Yoshida K; Yamaguchi T
    J Med Ultrason (2001); 2020 Jan; 47(1):35-46. PubMed ID: 31679096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure function for high-concentration biophantoms of polydisperse scatterer sizes.
    Han A; O'Brien W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Feb; 62(2):303-18. PubMed ID: 25643080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive detection of abnormal aortic architecture in Marfan syndrome with high-frequency ultrasonic tissue characterization.
    Recchia D; Sharkey AM; Bosner MS; Kouchoukos NT; Wickline SA
    Circulation; 1995 Feb; 91(4):1036-43. PubMed ID: 7850939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental assessment of four ultrasound scattering models for characterizing concentrated tissue-mimicking phantoms.
    Franceschini E; Guillermin R
    J Acoust Soc Am; 2012 Dec; 132(6):3735-47. PubMed ID: 23231104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental application of ultrafast imaging to spectral tissue characterization.
    Garcia-Duitama J; Chayer B; Han A; Garcia D; Oelze ML; Cloutier G
    Ultrasound Med Biol; 2015 Sep; 41(9):2506-19. PubMed ID: 26119459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling acoustic backscatter from kidney microstructure using an anisotropic correlation function.
    Insana MF
    J Acoust Soc Am; 1995 Jan; 97(1):649-55. PubMed ID: 7860839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.