These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 37102927)
41. Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. Hirst AR; Coates IA; Boucheteau TR; Miravet JF; Escuder B; Castelletto V; Hamley IW; Smith DK J Am Chem Soc; 2008 Jul; 130(28):9113-21. PubMed ID: 18558681 [TBL] [Abstract][Full Text] [Related]
42. An examination of the rheological and mucoadhesive properties of poly(acrylic acid) organogels designed as platforms for local drug delivery to the oral cavity. Jones DS; Muldoon BC; Woolfson AD; Sanderson FD J Pharm Sci; 2007 Oct; 96(10):2632-46. PubMed ID: 17702045 [TBL] [Abstract][Full Text] [Related]
43. Birefringent physical gels of N-(4-n-alkyloxybenzoyl)-L-alanine amphiphiles in organic solvents: the role of hydrogen-bonding. Patra T; Pal A; Dey J J Colloid Interface Sci; 2010 Apr; 344(1):10-20. PubMed ID: 20097349 [TBL] [Abstract][Full Text] [Related]
44. Supramolecular self-assembly and physical-gel formation in disc-like liquid crystals: a scalable predictive model for gelation and an application in photovoltaics. Iqbal S; Khan AA RSC Adv; 2019 Feb; 9(11):6335-6345. PubMed ID: 35517296 [TBL] [Abstract][Full Text] [Related]
45. Structural and mechanical properties of organogels: Role of oil and gelator molecular structure. Cerqueira MA; Fasolin LH; Picone CSF; Pastrana LM; Cunha RL; Vicente AA Food Res Int; 2017 Jun; 96():161-170. PubMed ID: 28528095 [TBL] [Abstract][Full Text] [Related]
46. Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator-Solvent Reactions and Material Properties Correlation. Chevigny R; Rahkola H; Sitsanidis ED; Korhonen E; Hiscock JR; Pettersson M; Nissinen M Chem Mater; 2024 Jan; 36(1):407-416. PubMed ID: 38222938 [TBL] [Abstract][Full Text] [Related]
48. Kinetics of 12-Hydroxyoctadecanoic Acid SAFiN Crystallization Rationalized Using Hansen Solubility Parameters. Rogers MA; Marangoni AG Langmuir; 2016 Dec; 32(48):12833-12841. PubMed ID: 27809551 [TBL] [Abstract][Full Text] [Related]
49. Low Molecular Weight Gelators Based on Functionalized l-Dopa Promote Organogels Formation. Giuri D; Zanna N; Tomasini C Gels; 2019 May; 5(2):. PubMed ID: 31091701 [TBL] [Abstract][Full Text] [Related]
50. Formulation and evaluation of lecithin organogel for topical delivery of fluconazole. Jadhav KR; Kadam VJ; Pisal SS Curr Drug Deliv; 2009 Apr; 6(2):174-83. PubMed ID: 19450224 [TBL] [Abstract][Full Text] [Related]
51. Structural Tunability on Naphthalimide-Based Dendrimer Gelators via Glaser Coupling Interaction with Tailored Gelation Solvent Polarity and Stimuli-Responsive Properties. Ge J; Guo J; Yu X; Li Y; Ma Z Langmuir; 2021 Mar; 37(8):2677-2682. PubMed ID: 33599502 [TBL] [Abstract][Full Text] [Related]
52. Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Suzuki M; Hanabusa K Chem Soc Rev; 2010 Feb; 39(2):455-63. PubMed ID: 20111770 [TBL] [Abstract][Full Text] [Related]
53. Solvent-mediated gel formation, hierarchical structures, and rheological properties of organogels. Su MM; Yang HK; Ren LJ; Zheng P; Wang W Soft Matter; 2015 Jan; 11(4):741-8. PubMed ID: 25482827 [TBL] [Abstract][Full Text] [Related]
54. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug. Pereira Camelo SR; Franceschi S; Perez E; Girod Fullana S; Ré MI Drug Dev Ind Pharm; 2016; 42(6):985-97. PubMed ID: 26548427 [TBL] [Abstract][Full Text] [Related]
56. A novel chiral separation material: polymerized organogel formed by chiral gelators for the separation of D- and L-phenylalanine. Fu X; Yang Y; Wang N; Wang H; Yang Y J Mol Recognit; 2007; 20(4):238-44. PubMed ID: 17624913 [TBL] [Abstract][Full Text] [Related]
57. Solvent effects on modulus of poly(propylene oxide)-based organogels as measured by cavitation rheology. Bentz KC; Walley SE; Savin DA Soft Matter; 2016 Jun; 12(22):4991-5001. PubMed ID: 27181162 [TBL] [Abstract][Full Text] [Related]
58. The role of edible oils in low molecular weight organogels rheology and structure. Lupi FR; De Santo MP; Ciuchi F; Baldino N; Gabriele D Food Res Int; 2018 Sep; 111():399-407. PubMed ID: 30007702 [TBL] [Abstract][Full Text] [Related]
59. Pyrene-containing peptide-based fluorescent organogels: inclusion of graphene into the organogel. Adhikari B; Nanda J; Banerjee A Chemistry; 2011 Oct; 17(41):11488-96. PubMed ID: 21953927 [TBL] [Abstract][Full Text] [Related]
60. Pyrenyl-linker-glucono gelators. Correlations of gel properties with gelator structures and characterization of solvent effects. Yan N; Xu Z; Diehn KK; Raghavan SR; Fang Y; Weiss RG Langmuir; 2013 Jan; 29(2):793-805. PubMed ID: 23252823 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]