These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37103232)

  • 1. Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review.
    Kebaili A; Lapuyade-Lahorgue J; Ruan S
    J Imaging; 2023 Apr; 9(4):. PubMed ID: 37103232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A survey on deep learning applied to medical images: from simple artificial neural networks to generative models.
    Celard P; Iglesias EL; Sorribes-Fdez JM; Romero R; Vieira AS; Borrajo L
    Neural Comput Appl; 2023; 35(3):2291-2323. PubMed ID: 36373133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
    Ahmad B; Sun J; You Q; Palade V; Mao Z
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-domain attention-guided generative data augmentation for medical image analysis with limited data.
    Xu Z; Tang J; Qi C; Yao D; Liu C; Zhan Y; Lukasiewicz T
    Comput Biol Med; 2024 Jan; 168():107744. PubMed ID: 38006826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data augmentation for medical imaging: A systematic literature review.
    Garcea F; Serra A; Lamberti F; Morra L
    Comput Biol Med; 2023 Jan; 152():106391. PubMed ID: 36549032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generative Adversarial Networks in Medical Image augmentation: A review.
    Chen Y; Yang XH; Wei Z; Heidari AA; Zheng N; Li Z; Chen H; Hu H; Zhou Q; Guan Q
    Comput Biol Med; 2022 May; 144():105382. PubMed ID: 35276550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generative approach for data augmentation for deep learning-based bone surface segmentation from ultrasound images.
    Zaman A; Park SH; Bang H; Park CW; Park I; Joung S
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):931-941. PubMed ID: 32399586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing MR image segmentation with realistic adversarial data augmentation.
    Chen C; Qin C; Ouyang C; Li Z; Wang S; Qiu H; Chen L; Tarroni G; Bai W; Rueckert D
    Med Image Anal; 2022 Nov; 82():102597. PubMed ID: 36095907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning for the harmonization of structural MRI scans: a survey.
    Abbasi S; Lan H; Choupan J; Sheikh-Bahaei N; Pandey G; Varghese B
    Biomed Eng Online; 2024 Aug; 23(1):90. PubMed ID: 39217355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3DGAUnet: 3D Generative Adversarial Networks with a 3D U-Net Based Generator to Achieve the Accurate and Effective Synthesis of Clinical Tumor Image Data for Pancreatic Cancer.
    Shi Y; Tang H; Baine MJ; Hollingsworth MA; Du H; Zheng D; Zhang C; Yu H
    Cancers (Basel); 2023 Nov; 15(23):. PubMed ID: 38067200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realistic generation of diffusion-weighted magnetic resonance brain images with deep generative models.
    Hirte AU; Platscher M; Joyce T; Heit JJ; Tranvinh E; Federau C
    Magn Reson Imaging; 2021 Sep; 81():60-66. PubMed ID: 34116133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based approaches for multi-omics data integration and analysis.
    Ballard JL; Wang Z; Li W; Shen L; Long Q
    BioData Min; 2024 Oct; 17(1):38. PubMed ID: 39358793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of medical image data augmentation techniques for deep learning applications.
    Chlap P; Min H; Vandenberg N; Dowling J; Holloway L; Haworth A
    J Med Imaging Radiat Oncol; 2021 Aug; 65(5):545-563. PubMed ID: 34145766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing cancer differentiation with synthetic MRI examinations via generative models: a systematic review.
    Dimitriadis A; Trivizakis E; Papanikolaou N; Tsiknakis M; Marias K
    Insights Imaging; 2022 Dec; 13(1):188. PubMed ID: 36503979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully Convolutional Network for the Semantic Segmentation of Medical Images: A Survey.
    Huang SY; Hsu WL; Hsu RJ; Liu DW
    Diagnostics (Basel); 2022 Nov; 12(11):. PubMed ID: 36428824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medical Image Processing based on Generative Adversarial Networks: A Systematic Review.
    Liu J; Li K; Dong H; Han Y; Li R
    Curr Med Imaging; 2023 Oct; ():. PubMed ID: 37881080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combating COVID-19 Using Generative Adversarial Networks and Artificial Intelligence for Medical Images: Scoping Review.
    Ali H; Shah Z
    JMIR Med Inform; 2022 Jun; 10(6):e37365. PubMed ID: 35709336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active Appearance Model Induced Generative Adversarial Network for Controlled Data Augmentation.
    Liu J; Shen C; Liu T; Aguilera N; Tam J
    Med Image Comput Comput Assist Interv; 2019 Oct; 11764():201-208. PubMed ID: 31696163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.