BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37103322)

  • 1. Using Different Surface Energy Models to Assess the Interactions between Antiviral Coating Films and phi6 Model Virus.
    Peršin Fratnik Z; Plohl O; Kokol V; Fras Zemljič L
    J Funct Biomater; 2023 Apr; 14(4):. PubMed ID: 37103322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing Surface Characteristics of Rare Earth Minerals Using Contact Angle Measurements, Atomic Force Microscopy, and Inverse Gas Chromatography.
    Khodakarami M; Alagha L; Burnett DJ
    ACS Omega; 2019 Aug; 4(8):13319-13329. PubMed ID: 31460460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wettability of pear leaves from three regions characterized at different stages after flowering using the OWRK method.
    Gao Y; Guo R; Fan R; Liu Z; Kong W; Zhang P; Du FP
    Pest Manag Sci; 2018 Aug; 74(8):1804-1809. PubMed ID: 29389059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wettability of bare and fluorinated silanes: a combined approach based on surface free energy evaluations and dipole moment calculations.
    Cappelletti G; Ardizzone S; Meroni D; Soliveri G; Ceotto M; Biaggi C; Benaglia M; Raimondi L
    J Colloid Interface Sci; 2013 Jan; 389(1):284-91. PubMed ID: 23041024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The wetting properties of Langmuir-Blodgett and Langmuir-Schaefer films formed by DPPC and POSS compounds.
    Rojewska M; Skrzypiec M; Prochaska K
    Chem Phys Lipids; 2019 Jul; 221():158-166. PubMed ID: 30954535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Testing of Dental Biomaterials-Determination of Contact Angle and Surface Free Energy.
    Liber-Kneć A; Łagan S
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34064111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulose.
    Mohan T; Kargl R; Doliška A; Vesel A; Köstler S; Ribitsch V; Stana-Kleinschek K
    J Colloid Interface Sci; 2011 Jun; 358(2):604-10. PubMed ID: 21458821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling liquid penetration into porous materials based on substrate and liquid surface energies.
    Waldner C; Hirn U
    J Colloid Interface Sci; 2023 Jun; 640():445-455. PubMed ID: 36870220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of microbial adhesion to natural and synthetic polysaccharide-based films and its relationship with the surface energy components.
    Prokopovich P; Perni S
    J Mater Sci Mater Med; 2009 Jan; 20(1):195-202. PubMed ID: 18712504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of Aceria litchii (Keifer) infestation on the surface properties of litchi leaf hosts.
    Song Q; Zheng J; Chen S; Lan Y; Li H; Zeng L; Yue X
    Pest Manag Sci; 2024 Jun; 80(6):2647-2657. PubMed ID: 38394076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Prediction of Wettability and Adhesion of Lotion to Skin Based on the OWRK Method].
    Hashizaki K; Sunaga K; Oda Y; Bashuda M; Imai M; Goto Y; Taguchi H; Saito Y; Fujii M
    Yakugaku Zasshi; 2019; 139(4):635-640. PubMed ID: 30930399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-Independent Surface Energy Tuning via Siloxane Treatment for Printed Electronics.
    Schlisske S; Held M; Rödlmeier T; Menghi S; Fuchs K; Ruscello M; Morfa AJ; Lemmer U; Hernandez-Sosa G
    Langmuir; 2018 May; 34(21):5964-5970. PubMed ID: 29718677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Method for Measuring the Surface Free Energy of Topical Semi-solid Dosage Forms.
    Hashizaki K; Hoshii Y; Ikeuchi K; Imai M; Taguchi H; Goto Y; Fujii M
    Chem Pharm Bull (Tokyo); 2021; 69(11):1083-1087. PubMed ID: 34719590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the incompatibilities of interaction scales and processes with focus on the work of adhesion.
    Rosenholm JB
    Adv Colloid Interface Sci; 2016 Aug; 234():89-107. PubMed ID: 27180135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface free energy characterization of vernix caseosa. Potential role in waterproofing the newborn infant.
    Youssef W; Wickett RR; Hoath SB
    Skin Res Technol; 2001 Feb; 7(1):10-7. PubMed ID: 11301635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface energy and wettability of spin-coated thin films of lignin isolated from wood.
    Notley SM; Norgren M
    Langmuir; 2010 Apr; 26(8):5484-90. PubMed ID: 20349913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface free energy of ethylcellulose films and the influence of plasticizers.
    Oh E; Luner PE
    Int J Pharm; 1999 Oct; 188(2):203-19. PubMed ID: 10518676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films.
    Belibel R; Avramoglou T; Garcia A; Barbaud C; Mora L
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():998-1006. PubMed ID: 26652458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface free energy of polyurethane coatings with improved hydrophobicity.
    Król P; Król B
    Colloid Polym Sci; 2012 Jul; 290(10):879-893. PubMed ID: 22707844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.