These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 37103657)
1. Uptake, accumulation, toxicity, and interaction of metallic-based nanoparticles with plants: current challenges and future perspectives. Basit F; He X; Zhu X; Sheteiwy MS; Minkina T; Sushkova S; Josko I; Hu J; Hu W; Guan Y Environ Geochem Health; 2023 Jul; 45(7):4165-4179. PubMed ID: 37103657 [TBL] [Abstract][Full Text] [Related]
2. Effects of nanoparticles on trace element uptake and toxicity in plants: A review. Rizwan M; Ali S; Rehman MZU; Riaz M; Adrees M; Hussain A; Zahir ZA; Rinklebe J Ecotoxicol Environ Saf; 2021 Sep; 221():112437. PubMed ID: 34153540 [TBL] [Abstract][Full Text] [Related]
3. Dynamic interplay of metal and metal oxide nanoparticles with plants: Influencing factors, action mechanisms, and assessment of stimulatory and inhibitory effects. Javed R; Khan B; Sharafat U; Bilal M; Galagedara L; Abbey L; Cheema M Ecotoxicol Environ Saf; 2024 Feb; 271():115992. PubMed ID: 38262092 [TBL] [Abstract][Full Text] [Related]
4. Efficacy of metallic nanoparticles in attenuating the accumulation and toxicity of chromium in plants: Current knowledge and future perspectives. Ulhassan Z; Khan I; Hussain M; Khan AR; Hamid Y; Hussain S; Allakhverdiev SI; Zhou W Environ Pollut; 2022 Dec; 315():120390. PubMed ID: 36244495 [TBL] [Abstract][Full Text] [Related]
5. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment. Wang F; Liu X; Shi Z; Tong R; Adams CA; Shi X Chemosphere; 2016 Mar; 147():88-97. PubMed ID: 26761602 [TBL] [Abstract][Full Text] [Related]
6. [Biological Effects of ZnO Nanoparticles as Influenced by Arbuscular Mycorrhizal Inoculation and Phosphorus Fertilization]. Jing XX; Su ZZ; Xing HE; Wang FY; Shi ZY; Liu XQ Huan Jing Ke Xue; 2016 Aug; 37(8):3208-3215. PubMed ID: 29964752 [TBL] [Abstract][Full Text] [Related]
7. Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): A study on growth dynamics and plant cell death. Ahmed B; Khan MS; Musarrat J Environ Pollut; 2018 Sep; 240():802-816. PubMed ID: 29783198 [TBL] [Abstract][Full Text] [Related]
8. Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology. Ahmad A; Hashmi SS; Palma JM; Corpas FJ Chemosphere; 2022 Mar; 290():133329. PubMed ID: 34922969 [TBL] [Abstract][Full Text] [Related]
9. Fabricated nanoparticles: current status and potential phytotoxic threats. Yadav T; Mungray AA; Mungray AK Rev Environ Contam Toxicol; 2014; 230():83-110. PubMed ID: 24609519 [TBL] [Abstract][Full Text] [Related]
10. Nanoparticles based on essential metals and their phytotoxicity. Ruttkay-Nedecky B; Krystofova O; Nejdl L; Adam V J Nanobiotechnology; 2017 Apr; 15(1):33. PubMed ID: 28446250 [TBL] [Abstract][Full Text] [Related]
11. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Shahid M; Shamshad S; Rafiq M; Khalid S; Bibi I; Niazi NK; Dumat C; Rashid MI Chemosphere; 2017 Jul; 178():513-533. PubMed ID: 28347915 [TBL] [Abstract][Full Text] [Related]
12. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Dimkpa CO; McLean JE; Martineau N; Britt DW; Haverkamp R; Anderson AJ Environ Sci Technol; 2013 Jan; 47(2):1082-90. PubMed ID: 23259709 [TBL] [Abstract][Full Text] [Related]
13. Changes in the physiological and biochemical state of peanut plants ( Santos-Espinoza AM; González-Mendoza D; Ruiz-Valdiviezo VM; Luján-Hidalgo MC; Jonapa-Hernández F; Valdez-Salas B; Gutiérrez-Miceli FA Int J Phytoremediation; 2021; 23(7):747-754. PubMed ID: 33284665 [TBL] [Abstract][Full Text] [Related]
14. Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. Kim S; Sin H; Lee S; Lee I J Microbiol Biotechnol; 2013 Sep; 23(9):1279-86. PubMed ID: 23751560 [TBL] [Abstract][Full Text] [Related]
15. A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Aqeel U; Aftab T; Khan MMA; Naeem M; Khan MN Chemosphere; 2022 Mar; 291(Pt 1):132672. PubMed ID: 34756946 [TBL] [Abstract][Full Text] [Related]
16. OsFTIP7 determines metallic oxide nanoparticles response and tolerance by regulating auxin biosynthesis in rice. Jiang M; Wang J; Rui M; Yang L; Shen J; Chu H; Song S; Chen Y J Hazard Mater; 2021 Feb; 403():123946. PubMed ID: 33264991 [TBL] [Abstract][Full Text] [Related]
17. Interaction of Copper-Based Nanoparticles to Soil, Terrestrial, and Aquatic Systems: Critical Review of the State of the Science and Future Perspectives. Rajput V; Minkina T; Ahmed B; Sushkova S; Singh R; Soldatov M; Laratte B; Fedorenko A; Mandzhieva S; Blicharska E; Musarrat J; Saquib Q; Flieger J; Gorovtsov A Rev Environ Contam Toxicol; 2020; 252():51-96. PubMed ID: 31286265 [TBL] [Abstract][Full Text] [Related]
18. Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses. Song U; Lee S Environ Sci Pollut Res Int; 2016 May; 23(9):8539-45. PubMed ID: 26797943 [TBL] [Abstract][Full Text] [Related]
19. Modulation mechanism of phytotoxicity on Ipomoea aquatica Forssk. by surface coating-modified copper oxide nanoparticles and its health risk assessment. Huang Y; Bai X; Li C; Kang M; Weng Y; Gong D Environ Pollut; 2022 Dec; 314():120288. PubMed ID: 36180003 [TBL] [Abstract][Full Text] [Related]
20. [Eco-toxicological effect of metal-based nanoparticles on plants: Research progress]. Zhang H; Peng C; Yang JJ; Shi JY Ying Yong Sheng Tai Xue Bao; 2013 Mar; 24(3):885-92. PubMed ID: 23755509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]