BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37103675)

  • 1. Investigate the Possibility of Using Phosphorescence in Clinical Oncology as an Early Prognostic Test in Detecting Brain Carcinogenesis.
    Vinnyk YO; Kryvoruchko IA; Boyko VV; Ivanova YV; Gramatiuk S; Sargsyan K
    J Fluoresc; 2023 Nov; 33(6):2441-2449. PubMed ID: 37103675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical detection of triplet-state magnetic resonance studies on individual tryptophan residues of serum albumin: correlation between phosphorescence and zero-field splittings.
    Mao SY; Maki AH
    Biochemistry; 1987 Jun; 26(11):3106-14. PubMed ID: 3607014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luminescent Analysis of Blood Serum for Diagnostics of Pathological and Pre-Pathological States of Cancer Patients.
    Bondarenko M; Zaytseva O; Trusova V; Moiseenko A; Rukin A; Utytskykh T; Morozova O
    J Fluoresc; 2021 Jul; 31(4):1065-1073. PubMed ID: 33956266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorescence measurements of calf gamma-II, III, and IV crystallins at 77 and 293 K.
    Berger JW; Vanderkooi JM; Tallmadge DH; Borkman RF
    Exp Eye Res; 1989 May; 48(5):627-39. PubMed ID: 2737261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of lens alpha-crystallin tryptophan microenvironments by room temperature phosphorescence spectroscopy.
    Berger JW; Vanderkooi JM
    Biochemistry; 1989 Jun; 28(13):5501-8. PubMed ID: 2775720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic characterization of the 4-hydroxy catechol estrogen quinones-derived GSH and N-acetylated Cys conjugates.
    Jankowiak R; Markushin Y; Cavalieri EL; Small GJ
    Chem Res Toxicol; 2003 Mar; 16(3):304-11. PubMed ID: 12641430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Employing metformin-directed carbon dots with room-temperature phosphorescent towards the dual-channel detection of L-tryptophan.
    Feng Z; Wang J; Chen X; Liu J; Zhu Y; Yang X
    Colloids Surf B Biointerfaces; 2022 Feb; 210():112236. PubMed ID: 34836704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids.
    He Y; Wang HF; Yan XP
    Anal Chem; 2008 May; 80(10):3832-7. PubMed ID: 18407673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection.
    Alimova A; Katz A; Sriramoju V; Budansky Y; Bykov AA; Zeylikovich R; Alfano RR
    J Biomed Opt; 2007; 12(1):014004. PubMed ID: 17343479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of the local structure around tryptophan 51 and 64 in recombinant human erythropoietin by tryptophan phosphorescence.
    Kerwin BA; Aoki KH; Gonelli M; Strambini GB
    Photochem Photobiol; 2008; 84(5):1172-81. PubMed ID: 18331401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorescence of thermally altered human bone.
    Krap T; Busscher L; Oostra RJ; Aalders MCG; Duijst W
    Int J Legal Med; 2021 May; 135(3):1025-1034. PubMed ID: 33210233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan phosphorescence studies of the D-galactose/D-glucose-binding protein from Escherichia coli provide a molecular portrait with structural and dynamics features of the protein.
    D'Auria S; Varriale A; Gonnelli M; Saviano M; Staiano M; Rossi M; Strambini GB
    J Proteome Res; 2007 Apr; 6(4):1306-12. PubMed ID: 17328569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of tryptophan phosphorescence of aspartate aminotransferase from Escherichia coli.
    Cioni P; Onuffer JJ; Strambini GB
    Eur J Biochem; 1992 Oct; 209(2):759-64. PubMed ID: 1425679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramolecular quenching of tryptophan phosphorescence in short peptides and proteins.
    Gonnelli M; Strambini GB
    Photochem Photobiol; 2005; 81(3):614-22. PubMed ID: 15689181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tryptophan phosphorescence of G-actin and F-actin.
    Strambini GB; Lehrer SS
    Eur J Biochem; 1991 Feb; 195(3):645-51. PubMed ID: 1999187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual optical resolution of all four tryptophan residues in MPT63 protein by phosphorescence spectroscopy: assignment and significance.
    Ghosh R; Mukherjee M; Chattopadhyay K; Ghosh S
    J Phys Chem B; 2012 Oct; 116(41):12489-500. PubMed ID: 22998652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved room temperature tryptophan phosphorescence in proteins.
    Schauerte JA; Steel DG; Gafni A
    Methods Enzymol; 1997; 278():49-71. PubMed ID: 9170309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Clinical Imaging Methods for Monitoring Intratumoral Evolution.
    Kim JY; Gatenby RA
    Methods Mol Biol; 2017; 1513():61-81. PubMed ID: 27807831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.