BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37103688)

  • 1. Mesenchymal stem cells osteogenic differentiation by ZnO nanoparticles and polyurethane bimodal foam nanocomposites.
    Norozi S; Ghollasi M; Salimi A; Halabian R; Shahrousvad M
    Cell Tissue Bank; 2024 Mar; 25(1):167-185. PubMed ID: 37103688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro.
    Norouz F; Halabian R; Salimi A; Ghollasi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109857. PubMed ID: 31349533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenic differentiation of mesenchymal stem cells on the bimodal polymer polyurethane/polyacrylonitrile containing cellulose phosphate nanowhisker.
    Padash A; Halabian R; Salimi A; Kazemi NM; Shahrousvand M
    Hum Cell; 2021 Mar; 34(2):310-324. PubMed ID: 33090371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and evaluation of polyurethane/cellulose nanowhisker bimodal foam nanocomposites for osteogenic differentiation of hMSCs.
    Shahrousvand E; Shahrousvand M; Ghollasi M; Seyedjafari E; Jouibari IS; Babaei A; Salimi A
    Carbohydr Polym; 2017 Sep; 171():281-291. PubMed ID: 28578965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells.
    Khader A; Arinzeh TL
    Biotechnol Bioeng; 2020 Jan; 117(1):194-209. PubMed ID: 31544962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RGD-functionalized polyurethane scaffolds promote umbilical cord blood mesenchymal stem cell expansion and osteogenic differentiation.
    Tahlawi A; Klontzas ME; Allenby MC; Morais JCF; Panoskaltsis N; Mantalaris A
    J Tissue Eng Regen Med; 2019 Feb; 13(2):232-243. PubMed ID: 30537385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyurethane and polyurethane/hydroxyapatite scaffold in a three-dimensional culture system.
    Ghasroldasht MM; Mastrogiacomo M; Akbarian F; Rezaeian A
    Cell Biol Int; 2022 Dec; 46(12):2041-2049. PubMed ID: 35971683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PCL/Col I-based magnetic nanocomposite scaffold provides an osteoinductive environment for ADSCs in osteogenic cues-free media conditions.
    Sadeghzadeh H; Mehdipour A; Dianat-Moghadam H; Salehi R; Khoshfetrat AB; Hassani A; Mohammadnejad D
    Stem Cell Res Ther; 2022 Apr; 13(1):143. PubMed ID: 35379318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenic Differentiation Capacity of Dental Pulp Stem Cells on 3D Printed Polyurethane/Boric Acid Scaffold.
    Çelebi-Saltik B; Babadag S; Ballikaya E; Pat S; Öteyaka MÖ
    Biol Trace Elem Res; 2024 Apr; 202(4):1446-1456. PubMed ID: 37477847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Nanocomposite Scaffold Based on Polyurethane (PU) Containing Cobalt Nanoparticles (CoNPs) for Bone Tissue Engineering Applications.
    Norouz F; Poormoghadam D; Halabian R; Ghiasi M; Monfaredi M; Salimi A
    Curr Stem Cell Res Ther; 2023; 18(8):1120-1132. PubMed ID: 36797606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of liquid crystal-based composite substrates on cell functional responses of human umbilical cord-derived mesenchymal stem cells by mechano-regulatory process.
    Wu H; Shang Y; Zhang J; Cheang LH; Zeng X; Tu M
    J Biomater Appl; 2017 Oct; 32(4):492-503. PubMed ID: 28992805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Argon plasma modification promotes adipose derived stem cells osteogenic and chondrogenic differentiation on nanocomposite polyurethane scaffolds; implications for skeletal tissue engineering.
    Griffin MF; Ibrahim A; Seifalian AM; Butler PEM; Kalaskar DM; Ferretti P
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110085. PubMed ID: 31546386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic Differentiation of Mesenchymal Stem Cells with Silica-Coated Gold Nanoparticles for Bone Tissue Engineering.
    Gandhimathi C; Quek YJ; Ezhilarasu H; Ramakrishna S; Bay BH; Srinivasan DK
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31623264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc silicate mineral-coated scaffold improved in vitro osteogenic differentiation of equine adipose-derived mesenchymal stem cells.
    Bageshlooyafshar B; Vakilian S; Kehtari M; Eslami-Arshaghi T; Rafeie F; Ramezanifard R; Rahchamani R; Mohammadi-Sangcheshmeh A; Mostafaloo Y; Seyedjafari E
    Res Vet Sci; 2019 Jun; 124():444-451. PubMed ID: 29031416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Baghdadite nanoparticle-coated poly l-lactic acid (PLLA) ceramics scaffold improved osteogenic differentiation of adipose tissue-derived mesenchymal stem cells.
    Karimi Z; Seyedjafari E; Mahdavi FS; Hashemi SM; Khojasteh A; Kazemi B; Mohammadi-Yeganeh S
    J Biomed Mater Res A; 2019 Jun; 107(6):1284-1293. PubMed ID: 30706628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenic differentiation of hMSCs on semi-interpenetrating polymer networks of polyurethane/poly(2‑hydroxyethyl methacrylate)/cellulose nanowhisker scaffolds.
    Shahrousvand M; Ghollasi M; Zarchi AAK; Salimi A
    Int J Biol Macromol; 2019 Oct; 138():262-271. PubMed ID: 31302125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold.
    Xie J; Peng C; Zhao Q; Wang X; Yuan H; Yang L; Li K; Lou X; Zhang Y
    Acta Biomater; 2016 Jan; 29():365-379. PubMed ID: 26441129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new hydrogel with fluorapatite nanoparticles for osteogenic differentiation of human adipose-derived stem cells in tissue engineering field.
    Rohani Z; Ghollasi M; Aghamollaei H; Saidi H; Halabian R; Kheirollahzadeh F; Poormoghadam D
    Cell Tissue Res; 2022 Dec; 390(3):399-411. PubMed ID: 36152061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ preparation and osteogenic properties of bionanocomposite scaffolds based on aliphatic polyurethane and bioactive glass nanoparticles.
    Covarrubias C; Agüero A; Maureira M; Morelli E; Escobar G; Cuadra F; Peñafiel C; Von Marttens A
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():642-653. PubMed ID: 30606576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of vascular endothelial growth factor 165-loaded porous poly (ε-caprolactone) scaffolds on the osteogenic differentiation of adipose-derived stem cells].
    Xu W; Lu H; Ye J; Yang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):270-275. PubMed ID: 29806274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.