These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 37103844)
1. Lévy Flights Diffusion with Drift in Heterogeneous Membranes. Strzelewicz A; Krasowska M; Cieśla M Membranes (Basel); 2023 Apr; 13(4):. PubMed ID: 37103844 [TBL] [Abstract][Full Text] [Related]
2. Numerical Study of Drift Influence on Diffusion Transport through the Hybrid Membrane. Krasowska M; Strzelewicz A; Dudek G; Cieśla M Membranes (Basel); 2022 Aug; 12(8):. PubMed ID: 36005703 [TBL] [Abstract][Full Text] [Related]
3. Structure-diffusion relationship of polymer membranes with different texture. Krasowska M; Strzelewicz A; Dudek G; Cieśla M Phys Rev E; 2017 Jan; 95(1-1):012155. PubMed ID: 28208504 [TBL] [Abstract][Full Text] [Related]
5. Continuous-time random-walk model for anomalous diffusion in expanding media. Le Vot F; Abad E; Yuste SB Phys Rev E; 2017 Sep; 96(3-1):032117. PubMed ID: 29347028 [TBL] [Abstract][Full Text] [Related]
6. Taming Lévy flights in confined crowded geometries. Cieśla M; Dybiec B; Sokolov I; Gudowska-Nowak E J Chem Phys; 2015 Apr; 142(16):164904. PubMed ID: 25933788 [TBL] [Abstract][Full Text] [Related]
7. Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights. Ai BQ; Shao ZG; Zhong WR J Chem Phys; 2012 Nov; 137(17):174101. PubMed ID: 23145711 [TBL] [Abstract][Full Text] [Related]
8. Anomalous Diffusion of Deformable Particles in a Honeycomb Network. Shen Z; Plouraboué F; Lintuvuori JS; Zhang H; Abbasi M; Misbah C Phys Rev Lett; 2023 Jan; 130(1):014001. PubMed ID: 36669217 [TBL] [Abstract][Full Text] [Related]
11. Impact of diffusive motion on anomalous dispersion in structured disordered media: From correlated Lévy flights to continuous time random walks. Comolli A; Dentz M Phys Rev E; 2018 May; 97(5-1):052146. PubMed ID: 29906927 [TBL] [Abstract][Full Text] [Related]
12. Directed transport driven by Lévy flights coexisting with subdiffusion. Ai BQ; He YF J Chem Phys; 2010 Mar; 132(9):094504. PubMed ID: 20210402 [TBL] [Abstract][Full Text] [Related]
13. Lévy flights in confining potentials. Garbaczewski P; Stephanovich V Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031113. PubMed ID: 19905068 [TBL] [Abstract][Full Text] [Related]
14. Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. del-Castillo-Negrete D; Carreras BA; Lynch VE Phys Rev Lett; 2003 Jul; 91(1):018302. PubMed ID: 12906582 [TBL] [Abstract][Full Text] [Related]
15. Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. Chechkin AV; Gonchar VY; Gorenflo R; Korabel N; Sokolov IM Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021111. PubMed ID: 18850790 [TBL] [Abstract][Full Text] [Related]
16. Confined diffusion in a random Lorentz gas environment. Khatri N; Burada PS Phys Rev E; 2020 Jul; 102(1-1):012137. PubMed ID: 32794985 [TBL] [Abstract][Full Text] [Related]
17. Average time spent by Lévy flights and walks on an interval with absorbing boundaries. Buldyrev SV; Havlin S; Kazakov AY; da Luz MG; Raposo EP; Stanley HE; Viswanathan GM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041108. PubMed ID: 11690011 [TBL] [Abstract][Full Text] [Related]
18. The Lévy flight foraging hypothesis in a pelagic seabird. Focardi S; Cecere JG J Anim Ecol; 2014 Mar; 83(2):353-64. PubMed ID: 24102157 [TBL] [Abstract][Full Text] [Related]
20. Lévy walk dynamics in mixed potentials from the perspective of random walk theory. Zhou T; Xu P; Deng W Phys Rev E; 2021 Mar; 103(3-1):032151. PubMed ID: 33862717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]